For a standing wave on a string, the wavelength is equal to twice the length of the string:

In our problem, L=50.0 cm=0.50 m, therefore the wavelength of the wave is

And the speed of the wave is given by the product between the frequency and the wavelength of the wave:
An Inverted Microscope gives you more freedom than an upright microscope. Inverted microscopes are very useful
to examine the surface of heavy and large sized Items
for industrial purposes. Whereas <span>upright microscopes have very limited distance between the table and the objective.</span>
Answer:
24.084 m/s
Explanation:
From the law of conservation of linear momentum
Total momentum before collision equals to the total momentum after collision
Since momentum=mv where m is mass and v is velocity
where
is the mass of the truck,
is velocity of the truck,
is the common velocity of moving and standing truck after collision and
is the mass of the standing truck
Making
the subject we obtain
Substituting
as 25000 Kg,
as 22.3 m/s,
as 2000 Kg we obtain
Therefore, assuming no friction and considering that after collision they still move eastwards hence common velocity and initial truck velocities are positive
The truck was moving at 24.084 m/s
Answer:
Time spent on the greenway road = 4.5 hours
Time spent on the 2 lane road = 1.5 hours
Explanation:
The distance of the trip is 360 miles and the initial speed of the car is 62 miles/hr and after the road became 2 lane highway the car slowed to 54 miles/hr.
Let us divide the trip into two
Greenway
speed = distance/time
speed = 62 mph
time = a
distance = speed × time
distance = 62a
2 lane highway
speed = distance/time
speed = 54 mph
time = b
distance = speed × time
distance = 54b
Total distance
62a + 54b = 360......................(i)
Total time
a + b = 6..............................(ii)
a = 6-b
insert a in equation (i)
62(6-b) + 54b = 360
372 - 62b + 54b = 360
-8b = 360-372
-8b = - 12
b = 12/8
b = 1.5
from equation (ii)
a + 1.5 = 6
a = 6 - 1.5
a = 4.5
She does work from the moment she touches the book until she lets it go. Work is anything that requires energy. Therefore, she is working as she picks up the book, carries it, and when she is lifting it onto the shelf.