Answer:
s is distance so it's dimensions become L.
Nd other side we have ut+1\2at^2.
as 1\2 is a constant it will have dimensions and apply the dimensions to other quantities.
on solving u will get L there also i,e ur LHS = RHS.
thus the equation is dimensionally consistent.
Explanation:
You see, during the day the ocean collects heat from the sun. So the air above the ocean get warm at night, but the rest of the air on the land gets cooler because water has the ability to collect energy from the Sun.
Answer:
the buoyant force on the chamber is F = 7000460 N
Explanation:
the buoyant force on the chamber is equal to the weight of the displaced volume of sea water due to the presence of the chamber.
Since the chamber is completely covered by water, it displaces a volume equal to its spherical volume
mass of water displaced = density of seawater * volume displaced
m= d * V , V = 4/3π* Rext³
the buoyant force is the weight of this volume of seawater
F = m * g = d * 4/3π* Rext³ * g
replacing values
F = 1025 kg/m³ * 4/3π * (5.5m)³ * 9.8m/s² = 7000460 N
Note:
when occupied the tension force on the cable is
T = F buoyant - F weight of chamber = 7000460 N - 87600 kg*9.8 m/s² = 6141980 N
Answer:
sorry I don't know but I hope you get a answer soon
According to Newton's 2nd law of motion:
F = m * a where F is the force applied in Newtons, m is the mass of the object in kg, and a is the acceleration of the object in m/

.
Therefore the force applied in this situation is simply:
F = 6 kg * 2.3 m/

= 13.8 N
Hope this helps!