Answer:
See explanation
Explanation:
I'm assuming you're asking about intensive properties. These properties only depend on the type of material, not the amount. Examples include color, temperature, boiling point, and hardness.
The last intermediate in citric acid cycle is Oxaloacetic acid.
<h3>What is Citric Acid Cycle?</h3>
Organic molecule HOC(CO2H)(CH2CO2H)2 is the chemical formula for citric acid. It is a weak organic acid that is colorless. Citrus fruits naturally contain it. It is a biochemical intermediary in the citric acid cycle, which is a component of all aerobic organisms' metabolism.
Every year, more than two million tons of citric acid are produced. It is frequently used as a flavoring, an acidifier, and a chelating agent.
Citrates, which include salts, esters, and the polyatomic anion present in solution, are derivatives of citric acid. Trisodium citrate is an example of the former; triethyl citrate is an example of an ester.
Learn more about citric acid with the help of the given link:
brainly.com/question/15582668
#SPJ4
Why would you ask a question if you didnt have a question?
Just get someone to report it, and itll be deleted
Answer:
80.7 L
Step-by-step explanation:
This looks like a case where we can use the Ideal Gas Law to calculate the volume.
pV = nRT Divide both sides by p
V = (nRT)/p
=====
Data:
n = 5.00 mol
R = 0.082 06 L·atm·K⁻¹mol⁻¹
T = (120 +273.15) K = 393.15K
p = 1520 mmHg × 1 atm/760 mmHg = 2.00 atm
=====
Calculation:
V = (5.00 × 0.082 06 × 393.15)/2.00
V = 161.3/2.00
V = 80.7 L
Answer:
The carbon in our cells, the oxygen in the air, the silicon in rocks, and just about every element, were all forged inside ancient stars before being strewn across the universe when the stars exploded. like a balloon?
hope this helps
Explanation: