The nuclei of atoms become unstable when the repelling forces of the protons cannot be balanced by the number of neutrons in the nucleus. It then re-arranges itself randomly to a more stable configuration by emitting any of a series of particles. During radioactive decay, an atom does not collapse.
Since an atom is mostly empty space - that is it’s nucleus is relatively distant from the electron shells so, in the presence of extreme forces such as gravity inthe collapse of a large star, the inward pressures on the atom overcome the natural balance of the atomic structure and the ‘empty space’ disappears as nuclei are mashed together by the intense pressures and a neutron star is formed. Under even more external pressure, even the neutron star can collapse to form a black hole.
For part of our orbit the northern half of Earth is tilted toward the Sun. This is summer in the northern hemisphere; there are longer periods of daylight, the Sun is higher in the sky, and the Sun's rays strike the surface more directly, giving us warmer temperatures.
First calculate the mole fraction of each substance:
Acetone: 2.88 mol ÷ (2.88 mol + 1.45 mol) = 0.665
Cyclohexane: 1.45 ÷ (2.88 mol + 1.45 mol) = 0.335
Raoult's Law: P(total) = P(acetone) · χ(acetone) + P(cyclohexane) · χ(cyclohexane).
P(total) = 229.5 torr · 0.665 + 97.6 torr · 0.335
P(total) = 185.3 torr
χ for acetone: 229.5 torr · 0.665 ÷ 185.3 torr = 0.823
χ for cyclohexane: 97.6 torr · 0.335 ÷ 185.3 torr = 0.177
I think its A. it cant be C or D b/c we are measuring the distance between Earth and Saturn, not the speed.
Answer:
u will equate and make V2 the subject because it's the one u are looking for ....