Answer:
The calculated density will be larger
Explanation:
The calculated density will be <u>larger</u>. Because, the volume is taken accurately, by the water displacement method. But, when we the took the mass, the water was present on the unknown solid. So, the mass of that water was added to the original mass of the solid. Hence, the mass measured was larger than the original mass. We, know from the formula of density that density is directly proportional to the mass of the object.
Density = Mass/Volume
Hence, the larger measured mass means the larger value of density.
Answer: Be= 2, C =4, Li = 1 and B=3
Explanation:
The valence shell can be define as the outermost shell of an atom that contains the valence electrons.
Beryllium (Be), electronic configuration; 1s2 2s2, = 2 electrons in its valence shell.
Carbon (C), electronic configuration; 1s2 2s2 2p2, = 4 electrons in its valence shell.
Lithium (Li), electronic configuration; 1s2 2s1 = 1 electron in its valence shell.
Boron (B) , electronic configuration; 1s2 2s2 2p1 = 3 electron in its valence shell.
Answer:
I'm not sure but all I can find is this for you :)
The temperature of the oxygen gas is 243.75 K.
Using ideal gas law to explain the answer, the absolute temperature of the gas will decrease if the number of moles of the gas increases and it will increase if the volume and/or pressure of the gas increases.