ANSWER:
Potential energy due to the position of an object above Earth's surface is called gravitational potential energy.
EXPLANATION:
Gravitational energy is the potential energy compared with gravitational force, as work is needed to further things against Earth’s gravity. The potential energy due to high positions is called gravitational potential energy, and is evidenced by water in an elevated storage or kept behind a dam. If an article falls from one point to different point inside a gravitational field, the force of gravitation will do actual work on the object, and the gravitational potential energy will decrease by the same amount.
Answer:
P₂ = 1312.88 atm
Explanation:
Given data:
Initial temperature = 25°C
Initial pressure = 1250 atm
Final temperature = 40°C
Final pressure = ?
Solution:
Initial temperature = 25°C (25+273.15 = 298.15 K)
Final temperature = 40°C ( 40+273.15 = 313.15 k)
The pressure of given amount of a gas is directly proportional to its temperature at constant volume and number of moles.
Mathematical relationship:
P₁/T₁ = P₂/T₂
Now we will put the values in formula:
1250 atm / 298.15 K = P₂/313.15 K
P₂ = 1250 atm × 313.15 K / 298.15 K
P₂ = 391437.5 atm. K /298.15 K
P₂ = 1312.88 atm
Answer:
it means positive and negative charges are equal.
Explanation:
An atom consist of electron, protons and neutrons. Protons and neutrons are present with in nucleus while the electrons are present out side the nucleus.
All these three subatomic particles construct an atom. A neutral atom have equal number of proton and electron. In other words we can say that negative and positive charges are equal in magnitude and cancel the each other. For example if neutral atom has 6 protons than it must have 6 electrons. The sum of neutrons and protons is the mass number of an atom while the number of protons are number of electrons is the atomic number of an atom.
when a neutral atom loses a electron positive charge is created because number of protons are positive charge becomes greater than negative charge.
X → X⁺ + e⁻
When a neutral atom accept the electron negative charge is created because negative charge is become greater than positive charge.
X + e⁻ → X⁻
Answer:
All of these are true
Explanation:
A buffer solution in chemistry is a solution that resists changes in pH when an acid or base is added to it. It is a solution that contains a weak acid and its conjugate base (anion) or a weak base and its conjugate acid.
A buffer is able to resist a change in pH due to the conjugate base and conjugate acid of the weak acids and bases contained in them respectively. The conjugate base/acid are present in an equilibrium quantity with their acid/base counterparts and help to neutralize or react with any additional H+ or OH- from an acid or base added to their solution.
However, when a strong acid or base is added to the buffer solution, there is only a slight change which practically does not change the pH of the solution.
Hence, all of the above options about a buffered solution is true.