In this item, we are given with the x-component of the velocity. The y-component is equal to 0 m/s. The time it takes for it to reach the volume can be related through the equation,
d = V₀t + 0.5gt²
Substituting the known values,
225 = (0 m/s)(t) + (0.5)(9.8)(t²)
Simplifying,
t = 6.776 s
To determine the distance of the student from the edge of the building, we multiply the x-component by the calculated time.
range = (12.5 m/s)(6.776 s)
range = 84.7 m
<em>Answer: 84.7 m</em>
The force of gravity between two objects is given by:

where
G is the gravitational constant
m1 and m2 are the masses of the two objects
r is their separation
In this problem, the mass of the object is

, while the Earth's mass is

. Their separation is

, therefore the gravitational force exerted on the object is
Explanation:
Formula for calculating the area of a rectangle A = Length *width
For statement A;
Given area of a rectangle with measured length = 2.536 mm and width = 1.4 mm.
Area of the rectangle = 2.536mm * 1.4mm
Area of the rectangle = 3.5504mm²
The rule of significant figures states that we should always convert the answer to the least number of significant figure amount the given value in question. Since 1.4mm has 2 significant figure, hence we will convert our answer to 2 significant figure.
Area of the rectangle = 3.6mm² (to 2sf)
For statement B;
Given area of a rectangle with measured length = 2.536 mm and width = 1.41 mm.
Area of the rectangle = 2.536mm * 1.41mm
Area of the rectangle = 3.57576mm²
Similarly, Since 1.41mm has 3 significant figure compare to 2.536 that has 4sf, hence we will convert our answer to 3 significant figure.
Area of the rectangle = 3.58mm² (to 3sf)
Based on the conversion, it can be seen that 3.6mm² is greater than 3.58mm², hence the area of rectangle in statement A is greater than the area of the rectangle in statement B.
Answer: If the forces on an object are balanced, the net force is zero. If the forces are unbalanced forces, the effects don't cancel each other. Any time the forces acting on an object are unbalanced, the net force is not zero, and the motion of the object changes.