Answer:
29.2 ft/s
Explanation:
The distance of the light's projection on the wall
y = 13 tan θ
where θ is the light's angle from perpendicular to the wall.
The light completes one rotation every 3 seconds, that is, 2π in 3 seconds,
Angular speed = w = (2π/3)
w = (θ/t)
θ = wt = (2πt/3)
(dθ/dt) = (2π/3)
y = 13 tan θ
(dy/dt) = 13 sec² θ (dθ/dt)
(dy/dt) = 13 sec² θ (2π/3)
(dy/dt) = (26π/3) sec² θ
when θ = 15°
(dy/dt) = (26π/3) sec² (15°)
(dy/dt) = 29.2 ft/s
Answer:28.8 knots
Explanation:
The ships are moving as the sides of a right triangle. Thus, Pyhogorean theorem will be useful in the following steps. Next, we have to know that the rate of change in distance, which is called velocity, can be described in terms of derivatives.
First, we have to calculate the distances covered by the ships from noon to 6 PM. In 6 hours, ship A moved 22*6=132 nautical mile. However, their first distance was 10 nautical miles, so 132+10=142 miles is the equivalent of A's displacement. For B, the distance travelled is 19*6=114 miles. From now on, A=142 miles and B=114 miles.
The distance between them is described with Pythogorean theorem, which is
and when we replace the values A and D, we find Distance (D) to be 182 miles.
Now, let's make the notations clear. The velocity of A and B is notated as
and
. The rate of change of distance is also notated as
. Now, we have to find
from the Pythogorean theorem. If we derive the Pythogorean expression
, we would have:

The derivation here includes chain rule and derives the interior parts of the parenthesis. When we insert distances for A and B and velocities for derivation notations, the formula becomes:
and the answer is 28.6 knots.
Answer:
427.392 kJ
Explanation:
m = Mass of gas = 4.5 kg
Initial temperature = 200 K
Final temperature = 360 K
R = Mass specific gas constant = 296.8 J/kgK
= Specific heat ratio = 1.5
Work done for a polytropic process is given by

The work input during the process is -427.392 kJ
Answer:
Explanation:
Work in pumping water from the tank is given as
W = ∫ y dF. From a to b
Where dF is the differential weight of the thin layer of liquid in the tank, y is the height of the differential layer
a is the lower limit of the height
b is the upper limit of the height.
We know that, .
F = ρVg
Where F is the weight
ρ is the density of water
V is the volume of water in tank
g is the acceleration due to gravity
Then,
dF = ρg ( Ady)
We know that the density and the acceleration due to gravity is constant, also the base area of the tank is constant, only the height that changes.
Then,
ρg = 62.4 lbs/ft³
Area = L×B = 3 × 9 = 27ft²
dF = ρg ( Ady)
dF = 1684.8dy
The height reduces from 12ft to 0ft
Then,
W = ∫ y dF. From a to b
W = ∫ 1684.8y dy From 0 to 12
W = 1684.8y²/2 from 0 to 12
W = 842.4 [y²] from y = 0 to y = 12
W = 842.4 (12²-0²)
W = 121,305.6 lb-ft
Answer:
The sky would be in a sphere shape because of the shape of the atmosphere and the shape of the earth