Answer:
linear density of the string = 4.46 × 10⁻⁴ kg/m
Explanation:
given,
mass of the string = 31.2 g
length of string = 0.7 m
linear density of the string = 
linear density of the string = 
linear density of the string = 44.57 × 10⁻³ kg/m
linear density of the string = 4.46 × 10⁻⁴ kg/m
Explanation:
It is given that,
A mass oscillates up and down on a vertical spring with an amplitude of 3 cm and a period of 2 s. It is a case of simple harmonic motion. If the amplitude of a wave is T seconds, then the distance cover by that object is 4 times the amplitude.
In 2 seconds, distance covered by the mass is 12 cm.
In 1 seconds, distance covered by the mass is 6 cm
So, in 16 seconds, distance covered by the mass is 96 cm
So, the distance covered by the mass in 16 seconds is 96 cm. Hence, this is the required solution.
Answer:
In general solids are easier to transport than liquids, but the above metal example is a valid one and the only other one that comes to mind is that of concrete. It is mixed as a liquid and transported as such, but then sprayed or laid down to dry and form a solid surface or filler.
Explanation:
Answer:
Explanation:
Temperature is the degree of hotness or coldness of a body.
Energy is the ability to do work by a body. They are of two forms, potential and kinetic energy. Potential energy is due to the position of a body whereas kinetic energy is due to the motion of a body.
Motion is the change in position of a body with time.
Temperature, energy and motion are all related.
Thermal energy is a form of kinetic energy which is concerned about the motion particles. This form of energy results from heat changes in a body which causes temperature differences.
When a body is heat and changes temperature, the particles begins to vibrate as they gain, thermal energy, a form of kinetic energy. At a point, the particles will break lose and set in motion.