Answer:
turgor pressure can be done in a lab or a self test.
turgor pressure is key to the plant’s vital processes. It makes the plant cell stiff and rigid. Without it, the plant cell becomes flaccid. Prolonged flaccidity could lead to the wilting of plants.
Turgor pressure is also important in stomate formation. The turgid guard cells create an opening for gas exchange. Carbon dioxide could enter and be used for photosynthesis. Other functions are apical growth, nastic movement, and seed dispersal.
Explanation:
- salt is bad for turgor pressure.
- Turgidity helps the plant to stay upright. If the cell loses turgor pressure, the cell becomes flaccid resulting in the wilting of the plant.
- The wilted plant on the left has lost its turgor as opposed to the plant on the right that has turgid cells.
These problems are a bit interesting. :)
First let's write the molecular formula for ammonium carbonate.
NH4CO3 (Note! The 4 and 3 are subscripts, and not coefficients)
17.6 gNH4CO3
Now to convert to mol of one of our substances we take the percent composition of that particular part of the molecule and multiply it by our starting mass. This is what it looks like using dimensional analyse.
17.6 gNH4CO3 * (Molar Mass of NH4 / Molar Mass of NH4CO3)
Grab a periodic table (or look one up) and find the molar masses for these molecules! Well. In this case I'll do it for you. (Note: I round the molar masses off to two decimal places)
NH4 = 14.01 + 4*1.01 = 18.05 g/mol
NH4CO3 = 14.01 + 4*1.01 + 12.01 + 3*16.00 = 78.06 g/mol
17.6 gNH4CO3 * (18.05 molNH4 / 78.06 molNH4CO3)
= 4.07 gNH4
Now just take the molar mass we found to convert that amount into moles!
4.07 gNH4 * (1 molNH4 / 18.05 gNH4) = 0.225 molNH4
<h3 /><h3>
<u>Answer</u><u> </u><u>above</u><u> </u></h3>
<u>I</u><u> </u><u>cant</u><u> </u><u>send</u><u> </u><u>this</u><u> </u><u>with</u><u> </u><u>no</u><u> </u><u>text</u><u> </u>
<u>Have</u><u> </u><u>a</u><u> </u><u>nice</u><u> </u><u>day</u>
If its sodium it would have 11 electrons