Answer:
A. Kilo , K, multiplication by 1000
B. Centi, c
C. Deci, d
D. Mili, m
E. Mega, M
F. Micro, u
Answer:
vHe / vNe = 2.24
Explanation:
To obtain the velocity of an ideal gas you must use the formula:
v = √3RT / √M
Where R is gas constant (8.314 kgm²/s²molK); T is temperature and M is molar mass of the gas (4x10⁻³kg/mol for helium and 20,18x10⁻³ kg/mol for neon). Thus:
vHe = √3×8.314 kgm²/s²molK×T / √4x10⁻³kg/mol
vNe = √3×8.314 kgm²/s²molK×T / √20.18x10⁻³kg/mol
The ratio is:
vHe / vNe = √3×8.314 kgm²/s²molK×T / √4x10⁻³kg/mol / √3×8.314 kgm²/s²molK×T / √20.18x10⁻³kg/mol
vHe / vNe = √20.18x10⁻³kg/mol / √4x10⁻³kg/mol
<em>vHe / vNe = 2.24</em>
<em />
I hope it helps!
Answer:
equation number 3 is balanced.
hope it helps ☺️!
Waves interact with matter in several ways. The interactions occur when waves pass from one medium to another. Besides bouncing back like an echo, waves may bend or spread out when they strike a new medium. These three ways that waves may interact with matter are called reflection, refraction, and diffraction.