Answer:
A. P₂ / P₁ = 2
B. P₂ / P₁ = 1.1
Explanation:
A. Determination of the ratio P₂/P₁
Volume = constant
Initial temperature (T₁) = 46 K
Final temperature (T₂) = 92 K
Final pressure /Initial pressure (P₂/P₁) =?
P₁/T₁ = P₂/T₂
P₁/46 = P₂/92
Cross multiply
46 × P₂ = P₁ × 92
Divide both side by P₁
46 × P₂ / P₁ = 92
Divide both side by 46
P₂ / P₁ = 92 / 46
P₂ / P₁ = 2
B. Determination of the ratio P₂/P₁
Volume = constant
Initial temperature (T₁) = 35.4 °C = 35.4 + 273 = 308.4 K
Final temperature (T₂) = 69.0 °C = 69 + 273 = 342 K
Final pressure /Initial pressure (P₂/P₁) =?
P₁/T₁ = P₂/T₂
P₁/308.4 = P₂/342
Cross multiply
308.4 × P₂ = P₁ × 342
Divide both side by P₁
308.4 × P₂ / P₁ = 342
Divide both side by 308.4
P₂ / P₁ = 342 / 308.4
P₂ / P₁ = 1.1
C.
Evaporation
Condensation
Precipitation
Answer:
The products have a higher heat content than the reactants.
Explanation:
The statement above is not true for an exothermic reaction because in an exothermic reaction heat is released to the surroundings. This simply means that the total energy of the products is less than that of the reactants.
Answer:
The IHD = 0
There is no unsaturation in the compound C4H9Cl
Explanation:
IHD = Index for Hydrogen Deficiency .It determines total number of unsaturation or Pi- bond present in the molecule.It is calculated using the formula:
For Molecule:

Here . C = carbon
H = Hydrogen
O = Oxygen
N = Nitrogen
X = Halogen
The IHD is calculated as :
...............(1)
For example :
C4H8O2
Here c = 4 , h = 8 , o = 2 .
n = x=0
Put the value in equation (1) and find IHD



IHD = 1
For C4H9Cl
c = 4 , h = 9 and x = 1
IHD for this molecule can be calculated as :



= 0
This means there is no unsaturation in the molecule.
Each bond is sigma bond and properly saturated.
Answer:
Number of moles = 2.89 mol
Explanation:
Given data:
Number of moles of sugar = ?
Mass of sugar = 990 g
Solution:
Formula:
Number of moles = mass/molar mass
Molar mass of C₁₂H₂₂O₁₁:
12× 12 + 22×1.008 + 16×11 = 342.2 g/mol
Number of moles = 990 g / 342.2 g/mol
Number of moles = 2.89 mol