1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
julia-pushkina [17]
3 years ago
10

Angle ACB is an inscribed angle of circle P. What is the measure of angle ACB if arc MAB is equal to 50 degrees?

Mathematics
2 answers:
kupik [55]3 years ago
7 0

Answer:

nfgxxxxazzzzzhff

Step-by-step explanation:

Yakvenalex [24]3 years ago
3 0

∠ACB is an inscribed angle, so

m∠ACB= (1/2)mAB =(1/2)*50=25⁰

m∠ACB= 25⁰

You might be interested in
Please help me with this question
LUCKY_DIMON [66]
All I can find on this is that it would be 10/16 but thats not an awnser. hmmm
7 0
3 years ago
a bird is flying at a true bearing of 75 degree's at a speed of 40 miles per hour. Write the velocity of the bird as a vector in
Allisa [31]

Answer: V = (10.4 mph, 38.6 mph)

Step-by-step explanation:

The velocity is written as (vx, vy)

where vx is the component of the velocity in the x-axis and vy is the component of the velocity in the y-axis.

In usual notation, the angles are measured counterclockwise from the positive x-axis.

We know that the angle is 75°, this means that the velocity in the x-axis will be equal to the total velocity of the bird projected in the x-axis (suppose a triangle rectangle, where the velocity is the hypotenuse, the x component is a cathetus and the y component is other cathetus)

vx = 40mph*cos(75°) = 10.4 mph

vy = 40mph*sin(75°) = 38.6mph

Then the vector of velocity is V = (10.4 mph, 38.6 mph)

5 0
3 years ago
Write a sequence of transformation that maps quadrilateral ABCD onto quadrilateral A. B. C. D IN THE PICTURE
Mice21 [21]

Answer:

The sequence of transformation is reflected across the y-axis and translated 2 units down

Step-by-step explanation:

Lets revise some transformation

- If point (x , y) reflected across the x-axis

∴ Its image is (x , -y)

- If point (x , y) reflected across the y-axis

∴ Its image is (-x , y)

- If point (x , y) translate h units to the right

∴ Its image is (x + h , y)

- If point (x , y) translate h units to the left

∴ Its image is (x - h , y)

- If point (x , y) translate k units up

∴ Its image is (x , y + k)

- If point (x , y) translate k units down

∴ Its image is (x , y - k)

* Now lets solve the problem

∵ The vertices of figure ABCD are:

  A (-1 , 3) , B (1 , 0) , C (2 , 3) , D (1 , 4)

∵ The vertices of figure A"B"C"D" are:

  A" (1 , 1) , B" (-1 , -2) , C" (-2 , 1) , D" (-1 , 2)

* Lets compare between ABCD and A"B"C"D"

∵ All x-coordinates has opposite signs

  -1 ⇒ 1 , 1 ⇒ -1 , 2 ⇒ -2 , 1 ⇒ -1

∴ The ABCD is reflected across the y-axis

∵ All y-coordinates subtracted by 2

 3 ⇒ 1 , 0 ⇒ -2 , 3 ⇒ 1 , 4 ⇒ 2

∴ The ABCD is translated 2 units down

* The sequence of transformation is reflected across the y-axis

  and translated 2 units down

5 0
3 years ago
Which number is the best approximation for 52‾√+23‾√?
Ilya [14]

Answer: 9.9 Original answer is 10.5

Step-by-step explanation:

7 0
2 years ago
Prove that
Pani-rosa [81]
Let's start from what we know.

(1)\qquad\sum\limits_{k=1}^n1=\underbrace{1+1+\ldots+1}_{n}=n\cdot 1=n\\\\\\
(2)\qquad\sum\limits_{k=1}^nk=1+2+3+\ldots+n=\dfrac{n(n+1)}{2}\quad\text{(arithmetic  series)}\\\\\\
(3)\qquad\sum\limits_{k=1}^nk\ \textgreater \ 0\quad\implies\quad\left|\sum\limits_{k=1}^nk\right|=\sum\limits_{k=1}^nk

Note that:

\sum\limits_{k=1}^n(-1)^k\cdot k^2=(-1)^1\cdot1^2+(-1)^2\cdot2^2+(-1)^3\cdot3^2+\dots+(-1)^n\cdot n^2=\\\\\\=-1^2+2^2-3^2+4^2-5^2+\dots\pm n^2

(sign of last term will be + when n is even and - when n is odd).
Sum is finite so we can split it into two sums, first S_n^+ with only positive trems (squares of even numbers) and second S_n^- with negative (squares of odd numbers). So:

\sum\limits_{k=1}^n(-1)^k\cdot k^2=S_n^+-S_n^-

And now the proof.

1) n is even.

In this case, both S_n^+ and S_n^- have \dfrac{n}{2} terms. For example if n=8 then:

S_8^+=\underbrace{2^2+4^2+6^2+8^2}_{\frac{8}{2}=4}\qquad\text{(even numbers)}\\\\\\
S_8^-=\underbrace{1^2+3^2+5^2+7^2}_{\frac{8}{2}=4}\qquad\text{(odd numbers)}\\\\\\

Generally, there will be:

S_n^+=\sum\limits_{k=1}^\frac{n}{2}(2k)^2\\\\\\S_n^-=\sum\limits_{k=1}^\frac{n}{2}(2k-1)^2\\\\\\

Now, calculate our sum:

\left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\left|S_n^+-S_n^-\right|=
\left|\sum\limits_{k=1}^\frac{n}{2}(2k)^2-\sum\limits_{k=1}^\frac{n}{2}(2k-1)^2\right|=\\\\\\=
\left|\sum\limits_{k=1}^\frac{n}{2}4k^2-\sum\limits_{k=1}^\frac{n}{2}\left(4k^2-4k+1\right)\right|=\\\\\\

=\left|4\sum\limits_{k=1}^\frac{n}{2}k^2-4\sum\limits_{k=1}^\frac{n}{2}k^2+4\sum\limits_{k=1}^\frac{n}{2}k-\sum\limits_{k=1}^\frac{n}{2}1\right|=\left|4\sum\limits_{k=1}^\frac{n}{2}k-\sum\limits_{k=1}^\frac{n}{2}1\right|\stackrel{(1),(2)}{=}\\\\\\=
\left|4\dfrac{\frac{n}{2}(\frac{n}{2}+1)}{2}-\dfrac{n}{2}\right|=\left|2\cdot\dfrac{n}{2}\left(\dfrac{n}{2}+1\right)-\dfrac{n}{2}\right|=\left|n\left(\dfrac{n}{2}+1\right)-\dfrac{n}{2}\right|=\\\\\\


=\left|\dfrac{n^2}{2}+n-\dfrac{n}{2}\right|=\left|\dfrac{n^2}{2}+\dfrac{n}{2}\right|=\left|\dfrac{n^2+n}{2}\right|=\left|\dfrac{n(n+1)}{2}\right|\stackrel{(2)}{=}\\\\\\\stackrel{(2)}{=}
\left|\sum\limits_{k=1}^nk\right|\stackrel{(3)}{=}\sum\limits_{k=1}^nk

So in this case we prove, that:

 \left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\sum\limits_{k=1}^nk

2) n is odd.

Here, S_n^- has more terms than S_n^+. For example if n=7 then:

S_7^-=\underbrace{1^2+3^2+5^2+7^2}_{\frac{n+1}{2}=\frac{7+1}{2}=4}\\\\\\
S_7^+=\underbrace{2^2+4^4+6^2}_{\frac{n+1}{2}-1=\frac{7+1}{2}-1=3}\\\\\\

So there is \dfrac{n+1}{2} terms in S_n^-, \dfrac{n+1}{2}-1 terms in S_n^+ and:

S_n^+=\sum\limits_{k=1}^{\frac{n+1}{2}-1}(2k)^2\\\\\\
S_n^-=\sum\limits_{k=1}^{\frac{n+1}{2}}(2k-1)^2

Now, we can calculate our sum:

\left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\left|S_n^+-S_n^-\right|=
\left|\sum\limits_{k=1}^{\frac{n+1}{2}-1}(2k)^2-\sum\limits_{k=1}^{\frac{n+1}{2}}(2k-1)^2\right|=\\\\\\=
\left|\sum\limits_{k=1}^{\frac{n+1}{2}-1}4k^2-\sum\limits_{k=1}^{\frac{n+1}{2}}\left(4k^2-4k+1\right)\right|=\\\\\\=
\left|\sum\limits_{k=1}^{\frac{n-1}{2}-1}4k^2-\sum\limits_{k=1}^{\frac{n+1}{2}}4k^2+\sum\limits_{k=1}^{\frac{n+1}{2}}4k-\sum\limits_{k=1}^{\frac{n+1}{2}}1\right|=\\\\\\

=\left|\sum\limits_{k=1}^{\frac{n-1}{2}-1}4k^2-\sum\limits_{k=1}^{\frac{n+1}{2}-1}4k^2-4\left(\dfrac{n+1}{2}\right)^2+\sum\limits_{k=1}^{\frac{n+1}{2}}4k-\sum\limits_{k=1}^{\frac{n+1}{2}}1\right|=\\\\\\=
\left|-4\left(\dfrac{n+1}{2}\right)^2+4\sum\limits_{k=1}^{\frac{n+1}{2}}k-\sum\limits_{k=1}^{\frac{n+1}{2}}1\right|\stackrel{(1),(2)}{=}\\\\\\
\stackrel{(1),(2)}{=}\left|-4\dfrac{n^2+2n+1}{4}+4\dfrac{\frac{n+1}{2}\left(\frac{n+1}{2}+1\right)}{2}-\dfrac{n+1}{2}\right|=\\\\\\

=\left|-n^2-2n-1+2\cdot\dfrac{n+1}{2}\left(\dfrac{n+1}{2}+1\right)-\dfrac{n+1}{2}\right|=\\\\\\=
\left|-n^2-2n-1+(n+1)\left(\dfrac{n+1}{2}+1\right)-\dfrac{n+1}{2}\right|=\\\\\\=
\left|-n^2-2n-1+\dfrac{(n+1)^2}{2}+n+1-\dfrac{n+1}{2}\right|=\\\\\\=
\left|-n^2-n+\dfrac{n^2+2n+1}{2}-\dfrac{n+1}{2}\right|=\\\\\\=
\left|-n^2-n+\dfrac{n^2}{2}+n+\dfrac{1}{2}-\dfrac{n}{2}-\dfrac{1}{2}\right|=\left|-\dfrac{n^2}{2}-\dfrac{n}{2}\right|=\left|-\dfrac{n^2+n}{2}\right|=\\\\\\

=\left|-\dfrac{n(n+1)}{2}\right|=|-1|\cdot\left|\dfrac{n(n+1)}{2}\right|=\left|\dfrac{n(n+1)}{2}\right|\stackrel{(2)}{=}\left|\sum\limits_{k=1}^nk\right|\stackrel{(3)}{=}\sum\limits_{k=1}^nk

We consider all possible n so we prove that:

\forall_{n\in\mathbb{N}}\quad\left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\sum\limits_{k=1}^nk
7 0
3 years ago
Other questions:
  • there are 36 roses and 27 carnations. anna is making flower arrangements using both flowers what is the maximum number of arrang
    12·1 answer
  • Sixteen students in a drama club want to attend a play. The tickect price is $ 35 for each student, and the transportation and m
    6·1 answer
  • What is the amount of sales tax owed on a $39 jacket if the tax rate is 5%?
    5·1 answer
  • The zeros of f(x)= 3x^3+16x^2+18x-4
    10·1 answer
  • How. do i find the line of symmetry
    5·1 answer
  • Drag the tiles to the correct boxes to complete the pairs. Not all tiles will be used.
    12·1 answer
  • Consider the numbers 0, 10, 20, 30, and 40. Multiply each by 4 and compare the result to 60 to determine into which of the follo
    8·1 answer
  • A recent poll of 124 randomly selected residents of a town with a population of 310 showed that 93 of them are opposed to a new
    8·2 answers
  • PLZZ HELP IN THIS :((
    8·1 answer
  • Find the range of possibilties for x.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!