To
determine the empirical formula of the compound given, we need to determine the ratio of each element in the compound. To do that we assume to have 100 grams sample
of the compound with the given composition. Then, we calculate for the number
of moles of each element. We do as follows:<span>
mass moles
C 56.79 4.73
H 6.56 6.50
O 28.37 1.77
N 8.28 0.59
Dividing the number of moles of each element with
the smallest value, we will have the empirical formula:
</span> moles ratio
C 4.73 / 0.59 8
H 6.50 / 0.59 11
O 1.77 / 0.59 3
N 0.59 / 0.59 1<span>
</span><span>
The empirical formula would be C8H11O3N.</span>
In the compound iodine heptafluoride: (hints: write out the molecular formula of this compound before answering the question. Also be sure you clearly understand the concepts of charge, oxidation numbers, how to determine charge and oxidation numbers, and - most important of all! - the similarities and the differences between charges and oxidation numbers)
<u>Each fluorine atom has a charge of 1</u>
<h3>What is
iodine heptafluoride?</h3>
The interhalogen compound iodine heptafluoride, often known as iodine(VII) fluoride or iodine fluoride, has the chemical formula IF7. As anticipated by VSEPR theory, it exhibits a unique pentagonal bipyramidal structure. The molecule is capable of undergoing the Bartell process, a pseudorotational rearrangement that is similar to the Berry mechanism but for a heptacoordinated system. It produces colorless crystals that melt at 4.5 °C and have a very narrow liquid range with a boiling point of 4.77 °C. The dense mist has an unpleasant, musty smell. The molecule is symmetrical with D5h. suggestion
To learn more about iodine heptafluoride from the given link:
brainly.com/question/28200374
#SPJ4
Answer:
Are basic:
[OH⁻] = 3.13x10⁻⁷M and [H₃O⁺] = 9.55x10⁻⁹M
Explanation:
A solution is basic when pH = - log [H₃O⁺] is higher than 7.
It is possible to convert [OH⁻] to [H₃O⁺] using:
[H₃O⁺] = 1x10⁻¹⁴ / [OH⁻]
a. [OH⁻] = 3.13x10⁻⁷M
[H₃O⁺] = 1x10⁻¹⁴ / [3.13x10⁻⁷M]
[H₃O⁺] = 3.19x10⁻⁸M
pH = - log [H₃O⁺] = 7.50
[OH⁻] = 3.13x10⁻⁷M is basic
b. pH = -log [H₃O⁺] = - log 0.000747M = 3.13.
This solution is not basic
c. [H₃O⁺] = 9.55x10⁻⁹M
pH = 8.02
This solution is also basic.
no the best source is blood.
an erosive process or erosion
erosion is when a rock is changed through the weather