To be honest, I learned this in school so I'll tell you XD
The formula of sodium oxide is Na2O
Answer:

Explanation:
Hello there!
In this case, since these problems about gas mixtures are based off Dalton's law in terms of mole fraction, partial pressure and total pressure, we can write the following for hydrogen, we are given its partial pressure:

And can be solved for the total pressure as follows:

However, we first calculate the mole fraction of hydrogen by subtracting that of nitrogen to 1 due to:

Then, we can plug in to obtain the total pressure:

Regards!
Answer:
inside the nucleus of an atom are protons and electrons.
Answer:
We need 0.375 mol of CH3OH to prepare the solution
Explanation:
For the problem they give us the following data:
Solution concentration 0,75 M
Mass of Solvent is 0,5Kg
knowing that the density of water is 1g / mL, we find the volume of water:

Now, find moles of
are needed using the molarity equation:
therefore the solution is prepared using 0.5 L of H2O and 0.375 moles of CH3OH, resulting in a concentration of 0,75M
1. Determine if the ionic substances can break apart into ions.
- e.g. CaCO3 isn't very soluble, do it can't dissolve and dissociate. If it can't pop apart, no ions.
2. Swap the partners for all the other ions that you can get from step 1. You can skip pairings with the same charge - a + can't get close to another + to react.
3. Use solubility, acid/base, and redox rules to see if anything will happen with the ions in solution.<span />