Answer:
block velocity v = 0.09186 = 9.18 10⁻² m/s and speed bollet v₀ = 11.5 m / s
Explanation:
We will solve this problem using the concepts of the moment, let's try a system formed by the two bodies, the bullet and the block; In this system all scaffolds during the crash are internal, consequently, the moment is preserved.
Let's write the moment in two moments before the crash and after the crash, let's call the mass of the bullet (m) and the mass of the Block (M)
Before the crash
p₀ = m v₀ + 0
After the crash
= (m + M) v
p₀ = 
m v₀ = (m + M) v (1)
Now let's lock after the two bodies are joined, in this case the mechanical energy is conserved, write it in two moments after the crash and when you have the maximum compression of the spring
Initial
Em₀ = K = ½ m v2
Final
E
= Ke = ½ k x2
Emo = E
½ m v² = ½ k x²
v² = k/m x²
Let's look for the spring constant (k), with Hook's law
F = -k x
k = -F / x
k = - 0.75 / -0.25
k = 3 N / m
Let's calculate the speed
v = √(k/m) x
v = √ (3/8.00) 0.15
v = 0.09186 = 9.18 10⁻² m/s
This is the spped of the block plus bullet rsystem right after the crash
We substitute calculate in equation (1)
m v₀ = (m + M) v
v₀ = v (m + M) / m
v₀ = 0.09186 (0.008 + 0.992) /0.008
v₀ = 11.5 m / s
True: All matter on earth is made up of atoms.
False: Subatomic particles don't identify an element. I give you an electron. Can you tell me where it came from?
False: (1/2) A neutron has no charge [That's the True part]. It identifies the element. (Not true).
True: description of an electron.
True: description of a proton
Let vb be the velocity of the motorboat and let vs be the velocity of the stream.
We know that when she drives upstream the velocity is 8 m/s, in this scenario the velocities point in opposite directions, then we have the equations:

When she drives downstream the velocites point in the same direction then we have the equation:

hence we have the system of equations:

Solving the first equation for the velocity of the boat we have:

Plugging this in the second equation we have:

Therefore, the velocity of the stream is 2 m/s
The amount of work done in emptying the tank by pumping the water over the top edge is 163.01* 10³ ft-lbs.
Given that, the tank is 8 feet across the top and 6 feet high
By the property of similar triangles, 4/6 = r/y
6r = 4y
r = 4/6*y = 2/3*y
Each disc is a circle with area, A = π(2/3*y)² = 4π/9*y²
The weight of each disc is m = ρw* A
m = 62.4* 4π/9*y² = 87.08*y²
The distance pumped is 6-y.
The work done in pumping the tank by pumping the water over the top edge is
W = 87.08 ∫(6-y)y² dy
W = 87.08 ∫(6y³ - y²) dy
W = 87.08 [6y⁴/4 - y³/3]
W = 87.08 [3y⁴/2- y³/3]
The limits are from 0 to 6.
W = 87.08 [3*6⁴/2 - 6³/3] = 87.08* [9*6³ - 2*36] = 87.08(1872) = 163013.76 ft-lbs
The amount of work done in emptying the tank by pumping the water over the top edge is 163013.76 ft-lbs.
To know more about work done:
brainly.com/question/16650139
#SPJ4