Answer:15th
Explanation:
I believe it will fall on the 15th stair because 10 times 15 is 150 divided by 10 m/s equals 15
Answer:
28.6 ohm
Explanation:
there is a 3rd resistor in series. voltage drop across the resistors will be equal to 60v
7*.2+7*.2 +.2x = 60
2.8+.2x = 60
.2x = 57.2
x = 28.6
Answer:
Option 10. 169.118 J/KgºC
Explanation:
From the question given above, the following data were obtained:
Change in temperature (ΔT) = 20 °C
Heat (Q) absorbed = 1.61 KJ
Mass of metal bar = 476 g
Specific heat capacity (C) of metal bar =?
Next, we shall convert 1.61 KJ to joule (J). This can be obtained as follow:
1 kJ = 1000 J
Therefore,
1.61 KJ = 1.61 KJ × 1000 J / 1 kJ
1.61 KJ = 1610 J
Next, we shall convert 476 g to Kg. This can be obtained as follow:
1000 g = 1 Kg
Therefore,
476 g = 476 g × 1 Kg / 1000 g
476 g = 0.476 Kg
Finally, we shall determine the specific heat capacity of the metal bar. This can be obtained as follow:
Change in temperature (ΔT) = 20 °C
Heat (Q) absorbed = 1610 J
Mass of metal bar = 0.476 Kg
Specific heat capacity (C) of metal bar =?
Q = MCΔT
1610 = 0.476 × C × 20
1610 = 9.52 × C
Divide both side by 9.52
C = 1610 / 9.52
C = 169.118 J/KgºC
Thus, the specific heat capacity of the metal bar is 169.118 J/KgºC
What are the options for A,B,C,D? There’s arrows
The tension in the cable is equal to 323.5 N.
<h3>What is the tension in the cable?</h3>
The tension, T in the cable is determined by taking moments about the pivot marked X.
The angles of the boom and the cable with the horizontal are first calculated.
Angle of the boom with horizontal, θ = tan⁻¹(5/10) = 26.56°
The angle of cable with horizontal, B = tan⁻¹(4/10) = 21.80
Taking moments about the pivot:
175.5 * cos 26.56 + 94.7 * cos 26.56 * 0.5 = T (sin(26.56 + 21.80) * 1
Tension = 241.68/0.747
Tension = 323.5 N
In conclusion, the tension in the cable helps to suspend the crate.
Learn more about tension at: brainly.com/question/24994188
#SPJ1