The brown Haze that forms over Sunny cities like Los Angeles is called smog. It <span> is a yellowish or blackish fog formed mainly by a mixture of pollutants in the atmosphere which consists of fine particles and ground level ozone.</span><span> Hope this answers the question.</span>
Answer : The value of
for the reaction is +571.6 kJ/mole.
Explanation :
According to Hess’s law of constant heat summation, the heat absorbed or evolved in a given chemical equation is the same whether the process occurs in one step or several steps.
According to this law, the chemical equation can be treated as ordinary algebraic expression and can be added or subtracted to yield the required equation. That means the enthalpy change of the overall reaction is the sum of the enthalpy changes of the intermediate reactions.
The given chemical reaction is,

Now we have to determine the value of
for the following reaction i.e,

According to the Hess’s law, if we reverse the reaction then the sign of
change.
So, the value
for the reaction will be:


Hence, the value of
for the reaction is +571.6 kJ/mole.
Answer:
Polyatomic Ionic Compound
Explanation:
In given statement the compound given is called as Sodium oleate this means that when Oleic acid is treated with NaOH then it forms.
In chemistry there are few species which are involved in the formation of compounds.
(i) Atoms:
It is very common that atoms of different elements combine to form compound through covalent bond. For example, H₂, O₂, N₂, F₂ e.t.c.
(i) Ions:
Other than covalent compounds we have ionic compounds. Ionic compounds are made up of ions. These ions forming the ionic compounds can be monatomic like Na⁺, Br⁻, Mg²⁺, Al³⁺, N⁻³ or they can be polyatomic like CO₃²⁻, SO₄²⁻, NH₄⁺, PO₄³⁻ e.t.c.
(iii) Polyatomic Ions:
In polyatomic ions we find a charge on a molecule which contains two or more atoms bonded covalently. Hence, in given compound we have a long chain of molecule containing a negative charge neutralized by opposite +ve charged sodium ion. Hence, Sodium oleate is a polyatomic ionic compound.
Answer
_2 HNO₃ + 1 Mg(OH)₂ → 1 Mg(NO₃)₂ + 2 H₂O
Explanation
Given:
______HNO3 + Mg(OH)2 ------>
Solution:
Note that the reaction between an acid and a base will give salt and water only.
Hence the complete reaction of the given equation is:
___HNO₃ + Mg(OH)₂ → Mg(NO₃)₂ + H₂O
To get the balanced equation for the acid-base reaction, 2 moles of HNO₃ will react with 1 mole of Mg(OH)₂ to produced 1 mole of Mg(NO₃)₂ and 2 moles of H₂O.
Therefore, the complete and balanced equation for the given acid-base reaction is:
_2 HNO₃ + 1 Mg(OH)₂ → 1 Mg(NO₃)₂ + 2 H₂O
Answer:
1223.38 mmHg
Explanation:
Using ideal gas equation as:

where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 
Also,
Moles = mass (m) / Molar mass (M)
Density (d) = Mass (m) / Volume (V)
So, the ideal gas equation can be written as:

Given that:-
d = 1.80 g/L
Temperature = 32 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T = (32 + 273.15) K = 305.15 K
Molar mass of nitrogen gas = 28 g/mol
Applying the equation as:
P × 28 g/mol = 1.80 g/L × 62.3637 L.mmHg/K.mol × 305.15 K
⇒P = 1223.38 mmHg
<u>1223.38 mmHg must be the pressure of the nitrogen gas.</u>