Mass of the water : 2.23 g
<h3>Furter explanation</h3>
Heat
Q = m.c.Δt
m= mass, g
c = heat capacity, for water : 4.18 J/g° C.
ΔT = temperature
Q= 140 J
Δt = 75 - 60 = 15
mass of the water :

2.1648 kg of CH4 will generate 119341 KJ of energy.
Explanation:
Write down the values given in the question
CH4(g) +2 O2 → CO2(g) +2 H20 (g)
ΔH1 = - 802 kJ
2 H2O(g)→2 H2O(I)
ΔH2= -88 kJ
The overall chemical reaction is
CH4 (g)+2 O2(g)→CO2(g)+2 H2O (I) ΔH2= -890 kJ
CH4 +2 O2 → CO2 +2 H20
(1mol)+(2mol)→(1mol+2mol)
Methane (CH4) = 16 gm/mol
oxygen (O2) =32 gm/mol
Here 1 mol CH4 ang 2mol of O2 gives 1mol of CO2 and 2 mol of 2 H2O
which generate 882 KJ /mol
Therefore to produce 119341 KJ of energy
119341/882 = 135.3 mol
to produce 119341 KJ of energy, 135.3 mol of CH4 and 270.6 mol of O2 will require
=135.3 *16
=2164.8 gm
=2.1648 kg of CH4
2.1648 kg of CH4 will generate 119341 KJ of energy
Sodium metal is quite reactive; sodium ions (as in NaCl) are quite unreactive. Cl^- ions are not reactive; they are stingily attracted to positive ions such as Na^+with which they form ionic bonds.
Answer:
A mixture of 100. mL of 0.1 M HC3H5O3 and 50. mL of NaOH
Explanation:
The pH of a buffer solution is calculated using following relation

Thus the pH of buffer solution will be near to the pKa of the acid used in making the buffer solution.
The pKa value of HC₃H₅O₃ acid is more closer to required pH = 4 than CH₃NH₃⁺ acid.
pKa = -log [Ka]
For HC₃H₅O₃
pKa = 3.1
For CH₃NH₃⁺
pKa = 10.64
pKb = 14-10.64 = 3.36 [Thus the pKb of this acid is also near to required pH value)
A mixture of 100. mL of 0.1 M HC3H5O3 and 50. mL of NaOH
Half of the acid will get neutralized by the given base and thus will result in equal concentration of both the weak acid and the salt making the pH just equal to the pKa value.