The earths gravity attracts the molecules and collects the most near the surface. They all have weight and therefore have more pressure at the surface, as well. As you go higher, the attraction becomes less and these molecules some times fly off into space. This layer of equilibrium has the least of weight or pressure.
The various pressures are measured by precision instruments called barometers or pressure sensors and expressed in inches of mercury or millibars. <span>Air has a weight too, although not very much, If you "pile" the air mile high, the bottom pressure is heavier because of all the air sitting on top of it, therefore the pressure decreases with altitude, because there is less air "piled up" </span>
<span>An analogy would be the same with water.</span>
Planes have these instruments that tells the crew the altitude above sea level they are at when flying.
<h3>
Answer:</h3>
4.70 × 10²⁴ atoms Ge
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Using Dimensional Analysis
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
7.80 mol Ge
<u>Step 2: Identify Conversions</u>
Avogadro's Number
<u>Step 3: Convert</u>
= 4.69716 × 10²⁴ atoms Ge
<u>Step 4: Check</u>
<em>We are given 3 sig figs. Follow sig fig rules and round.</em>
4.69716 × 10²⁴ atoms Ge ≈ 4.70 × 10²⁴ atoms Ge
Answer:
28.9%
Explanation:
Let's consider the following balanced equation.
2 FeS₂ + 11/2 O₂ ⇒ Fe₂O₃ + 4 SO₂
We can establish the following relations:
- The molar mass of Fe₂O₃ is 159.6 g/mol
- 1 mole of Fe₂O₃ is produced per 2 moles of FeS₂
- 1 mole of Fe is in 1 mole of FeS₂
- The molar mass of Fe is 55.84 g/mol
The amount of Fe in the sample that produced 0.516 g of Fe₂O₃ is:

The percent of Fe in 1.25 g of the ore is:
