Answer:
See explanation
Explanation:
Let us recall that the basic rule in writing balanced chemical reaction equations is that the number of atoms of each element on the right hand side of the reaction equation is the same of the number of atoms of the same element on the left hand side of the reaction equation.
The reaction of red hot iron and steam is written as follows;
3Fe + 4H2O → Fe3O4 + 4H2.
The decomposition reaction of ammonium dichromate is written as;
(NH4)2Cr2O7 → N2 + Cr2O3 + 4H2O
Reaction of aluminium, sodium hydroxide and water is as follows,
2Al + 2NaOH + 2H2O ----> 2NaAlO2 + 3H2
Reaction of potassium bicarbonate with sulphuric acid;
2KHCO3 + H2SO4 -------> K2SO4 + 2H2O + 2CO2
Reaction of zinc and sodium hydroxide is as follows;
Zn + 2NaOH→Na2ZnO2 + H2
<span>When two or more substances are mixed together but not chemically joined they are called as mixtures. Therefore, it is only a physical change taking place.
</span>
I hope this helps you! Good luck :)
Answer:
The number of valence electrons can be known from the group that the element is in (except the lanthanides, actinides and groups 3-12).
Explanation:
Group 1 has 1 valence electron. Group 2 has 2 valence electrons. Group 13 has 3 valence electrons. Group 14 has 4, group 15 has 5, group 16 has 6, group 17 has 7, and group 18 has 8.
Group 18 are the noble gases which are stable.
Group 17 are the halogens and react well with the alkali metals.
Answer:

Explanation:
Given that;
The energy gap between the valence band and the conduction band in the widely-used semiconductor gallium arsenide (GaAs) is Δ = 1.424 eV.
So; that implies that:

Suppose that we consider a small piece of GaAs with 1020 available electrons, -- This is taking about the numbers of electrons used which is :

Temperature is given as:

Number of electrons can be calculated by using the formula;



What do you need help on?