<h2><u>Answer:</u></h2>
Bernoulli's Theorem in a general sense relates the weight, speed, and rise in a moving fluid (liquid or gas), the compressibility and consistency (internal grinding) of which are insignificant and the flood of which is predictable, or laminar.
(1): We can discover the speed of Efflux of a fluid.
This is given by v= sqrt (2gh), where the fluid is turning out from an opening in a vessel at profundity h from free fluid surface. This condition is known as Torricelli's hypothesis.
(2): Vena Contracta: The fluid stream from gap contracts at a separation minimal outside the opening to a neck, called Vena Contracta.
The territory of cross-segment of a fly is littler than a zone of opening. From this reality, we can discover the coefficient of withdrawal.
(3) : Bernoulli's standard is utilized in the development of Venturimeter, an instrument for estimation of measure of a stream of a fluid through a pipe.
Answer:
See below
Explanation:
<u> Name </u> <u>Formula </u> <u> Major species </u> <u> </u>
Zinc iodide ZnI₂ H₂O(ℓ), I⁻(aq), Zn²⁺(aq),
Nitrogen(I) oxide N₂O H₂O(ℓ), N₂O(aq)
Sodium nitrite NaNO₂ H₂O(ℓ), Na⁺(aq), NO₂⁻(aq)
Glucose C₆H₁₂O₆ H₂O(ℓ), C₆H₁₂O₆(aq)
Nickel(II) iodide NiI₂ H₂O(ℓ), I⁻(aq), Ni²⁺(aq)
- Glucose and nitrogen(I) oxide are covalent compounds. They do not dissociate in solution.
- The compounds containing metals are ionic. They produce ions in solution.
- ZnI₂ and NiI₂ produce twice as many iodide ions as metal ions.
The complete balanced chemical equation for this is:
<span>3KOH + H3PO4
--> K3PO4 + 3H2O</span>
First we calculate the number of moles of H3PO4:
moles H3PO4 = 0.650 moles / L * 0.024 L = 0.0156 mol
From stoichiometry, 3 moles of KOH is required for every
mole of H3PO4, therefore:
moles KOH = 0.0156 mol H3PO4 * (3 moles KOH / 1 mole
H3PO4) = 0.0468 mol
Calculating for volume given molarity of 0.350 M KOH:
Volume = 0.0468 mol / (0.350 mol / L) = 0.1337 L = 133.7
mL
Answer:
<span>133.7 mL KOH</span>