The approximate de Broglie wavelength of a tennis ball is 9.4×10^(-34) m.
What is the de Broglie wavelength:
It is the wavelength that is associated with an object in relation to its momentum and mass is known as de Broglie wavelength.
A particle's de Broglie wavelength is usually inversely proportional to its force.
The formula of de Broglie wavelength:
here mass of a tennis ball is given
mass, m=70 g = 0.07 kg
ball is moving with velocity
v = 10 m/s
h is Plank constant,
h=6.63×10^(-34) Js
substituting the values in formula,
λ = 6.63×10^(-34) / ( 0.070*10)
λ = 9.4 ×10^(-34) m
Hence
The approximate de Broglie wavelength of a tennis ball is 9.4×10^(-34) m
Learn more about de Broglie wavelength here:
<u>brainly.com/question/17295250</u>
#SPJ4
Answer:
Color
Explanation:
Thus, for stars, considering them as “black bodies”, we can get an approximate figure for their temperature by measuring their dominant frequency (color). Technically scientists measure the brightness of the blue light and that of red light from the star, and from this they can calculate the temperature of the star.
Answer:
The 10 kg rock has more inertia than the other two rocks.
Explanation
I think the answer is eustress and distress