Good Morning, how are you?
Your answer is C. The moon orbits and rotates the same, so we NEVER see the far side of the moon from earth :)
Have a great day :)
Answer:
25 N
Explanation:
Work is a product of force and perpendicular distance moved.
W=Fd where F is force exerted and d is perpendicular distance.
However, for this case, the distance is inclined hence resolving it to perpendicular so that it be along x-axis we have distance as 
Therefore, 
Making F the subject of the formula then
where
is the angle of inclination. Substituting 190 J for W then 18 degrees for
and 8 m for d then
Answer:
527 Hz
Solution:
As per the question:
Beat frequency of the player, 
Frequency of the tuning fork, f = 523 Hz
Now,
The initial frequency can be calculated as:


when

when

But we know that as the length of the flute increases the frequency decreases
Hence, the initial frequency must be 527 Hz
1) In the first case, the correct answer is
<span>A.Wavelengths measured would match the actual wavelengths emitted.
In fact, the stars are not moving relative to Earth, so there is no shift in the measured wavelength.
2) In this second case, the correct answer is
</span><span>A.Wavelengths measured would be shorter than the actual wavelengths emitted.
</span>in fact, since the stars in this case are moving towards the Earth, then apparent frequency of their emitted light will be larger than the actual frequency, because of the Doppler effect, according to the formula:

where f0 is the actual frequency, f' the apparent frequency, c the speed of light and vs the velocity of the source (the stars) relative to the obsever (Earth). Vs is negative when the source is moving towards the observer, so the apparent frequency f' is larger than the actual frequency f0. But the wavelength is inversely proportional to the frequency, so the apparent wavelength will be shorter than the actual wavelength.
Answer:
0
Explanation:
The object would be neutral. There are equal numbers of protons and electrons, so the positive and negative charges cancel one another.