Scalar quantities have only a magnitude. So the answer is scalar quantities.
I think everything looks good but 2 might not be right, it might be B
Answer:
option C
Explanation:
The correct answer is option C
When the driver takes the sharp right turn the door will exert rightward pressure on the driver.
When the driver takes the sudden right turn the tendency of the body is to be in the straight line by the vehicle moves in the circular path so, as the vehicle turns it applies a rightward force on you.
The pushing of the door to you because of the centripetal force acting on the car due to sudden sharp turn.
Horizontal speed = 24.0 m/s
height of the cliff = 51.0 m
For the initial vertical speed will are considering the vertical component. Therefore,
Since the student fires the canonical ball at the maximum height of 51 m, the initial vertical velocity will be zero. This means

let's find how long the ball remained in the air.
![\begin{gathered} 0=51-\frac{1}{2}(9.8)t^2 \\ 4.9t^2=51 \\ t^2=\frac{51}{4.9} \\ t^2=10.4081632653 \\ t=\sqrt[]{10.4081632653} \\ t=3.22 \\ t=3.22\text{ s} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%200%3D51-%5Cfrac%7B1%7D%7B2%7D%289.8%29t%5E2%20%5C%5C%204.9t%5E2%3D51%20%5C%5C%20t%5E2%3D%5Cfrac%7B51%7D%7B4.9%7D%20%5C%5C%20t%5E2%3D10.4081632653%20%5C%5C%20t%3D%5Csqrt%5B%5D%7B10.4081632653%7D%20%5C%5C%20t%3D3.22%20%5C%5C%20t%3D3.22%5Ctext%7B%20s%7D%20%5Cend%7Bgathered%7D)
Finally, let's find the how far from the base of the building the ball landed(horizontal distance)