I'm assuming a 5-card hand being dealt from a standard 52-card deck, and that there are no wild cards.
A full house is made up of a 3-of-a-kind and a 2-pair, both of different values since a 5-of-a-kind is impossible without wild cards.
Suppose we fix both card values, say aces and 2s. We get a full house if we are dealt 2 aces and 3 2s, or 3 aces and 2 2s.
The number of ways of drawing 2 aces and 3 2s is

and the number of ways of drawing 3 aces and 2 2s is the same,

so that for any two card values involved, there are 2*24 = 48 ways of getting a full house.
Now, count how many ways there are of doing this for any two choices of card value. Of 13 possible values, we are picking 2, so the total number of ways of getting a full house for any 2 values is

The total number of hands that can be drawn is

Then the probability of getting a full house is

Answer:
Here's one way to do it
Step-by-step explanation:
1. Solve the inequality for y
5x - y > -3
-y > -5x - 3
y < 5x + 3
2. Plot a few points for the "y =" line
I chose
\begin{gathered}\begin{array}{rr}\mathbf{x} & \mathbf{y} \\-2 & -7 \\-1 & -2 \\0 & 3 \\1 & 8 \\2 & 13 \\\end{array}\end{gathered}
x
−2
−1
0
1
2
y
−7
−2
3
8
13
You should get a graph like Fig 1.
3. Draw a straight line through the points
Make it a dashed line because the inequality is "<", to show that points on the line do not satisfy the inequality.
See Fig. 2.
4. Test a point to see if it satisfies the inequality
I like to use the origin,(0,0), for easy calculating.
y < 5x + 3
0 < 0 + 3
0 < 3. TRUE.
The condition is TRUE.
Shade the side of the line that contains the point (the bottom side).
And you're done (See Fig. 3).
Answer:
If a figure has four sides, then it is a kites.
Step-by-step explanation:
Answer
After 13.15 years the population of both towns will become equal.
Step-by-step explanation:
Population of the city Anville is given by using the compound interest formula
The formula of compound interest
A = p( 1+r/n)^n*t
using this we get
P1 = 16000 (1 +
) ^1*t
Population of the city of Brinker will be
P2 = 11000( 1 +
) ^1*t
now to make equal population in both towns
P1=P2
16000 (1 +
) ^1*t = 11000( 1 +
) ^1*t

t = 13.15 years