1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vika [28.1K]
3 years ago
15

During World War I, the Germans had a gun called Big Bertha that was used to shell Paris. The shell had an initial speed of 2.61

km/s at an initial inclination of 81.9° to the horizontal. The acceleration of gravity is 9.8 m/s^2. How far away did the shell hit? Answer in units of km How long was it in the air? Answer in units of s.

Physics
1 answer:
bonufazy [111]3 years ago
7 0

Answer:

The shell hit at a distance of 1.9 x 10² km

The time of flight of the shell was 5.3 x 10² s

Explanation:

The position of the shell is given by the vector "r":

r  = (x0 + v0 * t * cos α ; y0 + v0 * t * sin α + 1/2 g t²)

where:

x0 = initial horizontal position

v0 = magnitude of the initial velocity

t = time

α = launching angle

y0 = initial vertical position

g = acceleration of gravity

When the shell hit, the vertical component (ry) of the vector position r is 0. See figure.

Then:

ry = 0 =  y0 + v0 * t * sin α + 1/2 g t²

Since the gun is at the center of our system of reference, y0 and x0 = 0

0 = t (v0 sin α + 1/2 g t)

t= 0 is discarded as solution

v0 sin α + 1/2 g t = 0

t = -2v0 sin α / g

t = (-2 * 2610 m/s * sin 81.9°)/ (-9.8 m/s²) = 5.3 x 10² s. This is the time of flight of the shell until it hit.

Then, the distance at which the shell hit is:

Distance = Module of r = ( x0 + v0 * t * cos α; 0) = x0 + v0 * t * cos α  

Distance = 2.61 km/s * 5.3 x 10² s * cos 81.9 = 1.9 x 10² km

You might be interested in
An x-ray beam of wavelength 1.4×10−10m makes an angle of 20° with a set of planes in a crystal(the Bragg angle)causing first ord
Gnom [1K]

Answer:

Second order line appears at 43.33° Bragg angle.

Explanation:

When there is a scattering of x- rays from the crystal lattice and interference occurs, this is known as Bragg's law.

The Bragg's diffraction equation is :

n\lambda=2d\sin\theta      .....(1)

Here n is order of constructive interference, λ is wavelength of x-ray beam, d is the inter spacing distance of lattice and θ is the Bragg's angle or scattering angle.

Given :

Wavelength, λ = 1.4 x 10⁻¹⁰ m

Bragg's angle, θ = 20°

Order of constructive interference, n =1

Substitute these value in equation (1).

1\times1.4\times10^{-10} =2d\sin20

d = 2.04 x 10⁻¹⁰ m

For second order constructive interference, let the Bragg's angle be θ₁.

Substitute 2 for n, 2.04 x 10⁻¹⁰ m for d and 1.4 x 10⁻¹⁰ m for λ in equation (1).

2\times1.4\times10^{-10} =2\times2.04\times10^{-10} \sin\theta_{1}

\sin\theta_{1} =0.68

<em>θ₁ </em>= 43.33°

4 0
3 years ago
Biologists use optical tweezers to manipulate micron-sized objects using a beam of light. In this technique, a laser beam is foc
vekshin1

Answer:

Explanation:

Part A) Using

light intensity I= P/A

A= Area= π (Radius)^2= π((0.67*10^-6m)/(2))^2= 1.12*10^-13 m^2

Radius= Diameter/2

P= power= 10*10^-3=0.01 W

light intensity I= 0.01/(1.12*10^-13)= 9*10^10 W/m^2

Part B)  Using

I=c*ε*E^2/2

rearrange to solve for E= \sqrt{((I*2)/(c*ε))

c is the speed of light which is 3*10^8 m/s^2

ε=permittivity of free space or dielectric constant= 8.85* 10^-12 F⋅m−1

I= the already solved light intensity= 8.85*10^10 W/m^2

amplitude of the electric field E= \sqrt{(9*10^10 W/m^2)*(2) / (3*10^8 m/s^2)*(8.85* 10^-12 F⋅m−1)

---> E= \sqrt{(1.8*10^11) / (2.66*10^-3) = \sqrt{(6.8*10^13) = 8.25*10^6 V/m    

 

8 0
3 years ago
how can there be so many different substances in the world if there are only a few elements that are common? 
LuckyWell [14K]
-- If there are only  <em>10</em>  elements in the universe that can make compound molecules, and a compound molecule can be formed by combining  1,  2,  3, or  4  different elements, then that's already the possibility of  at least 400 different molecules.

-- There are many more than  10  elements that can combine to form compound molecules.

-- Every single "<em>organic</em>" molecule, of which there are thousands, is the combination of <em>carbon</em> with other elements.

-- Most all of the substances that can be distilled out of oil, including the paraffin waxes, the alcohols, gasoline, kerosene, butane, propane, octane, and natural gas, are made of just carbon, hydrogen, and oxygen, only with different numbers of each one. 

-- Plastics, drugs, rubber, and DNA are examples of molecules that are made of <em>hundreds</em> of atoms.
3 0
3 years ago
In an engine, a piston oscillates with simple harmonic motion so that its position varies according to the following expression,
eduard

(a) 4.06 cm

In a simple harmonic motion, the displacement is written as

x(t) = A cos (\omega t + \phi) (1)

where

A is the amplitude

\omega is the angular frequency

\phi is the phase

t is the time

The displacement of the piston in the problem is given by

x(t) = (5.00 cm) cos (5t+\frac{\pi}{5}) (2)

By putting t=0 in the formula, we find the position of the piston at t=0:

x(0) = (5.00 cm) cos (0+\frac{\pi}{5})=4.06 cm

(b) -14.69 cm/s

In a simple harmonic motion, the velocity is equal to the derivative of the displacement. Therefore:

v(t) = x'(t) = -\omega A sin (\omega t + \phi) (3)

Differentiating eq.(2), we find

v(t) = x'(t) = -(5 rad/s)(5.00 cm) sin (5t+\frac{\pi}{5})=-(25.0 cm/s) sin (5t+\frac{\pi}{5})

And substituting t=0, we find the velocity at time t=0:

v(0)=-(25.00 cm/s) sin (0+\frac{\pi}{5})=-14.69 cm/s

(c) -101.13 cm/s^2

In a simple harmonic motion, the acceleration is equal to the derivative of the velocity. Therefore:

a(t) = v'(t) = -\omega^2 A cos (\omega t + \phi)

Differentiating eq.(3), we find

a(t) = v'(t) = -(5 rad/s)(25.00 cm/s) cos (5t+\frac{\pi}{5})=-(125.0 cm/s^2) cos (5t+\frac{\pi}{5})

And substituting t=0, we find the acceleration at time t=0:

a(0)=-(125.00 cm/s) cos (0+\frac{\pi}{5})=-101.13 cm/s^2

(d) 5.00 cm, 1.26 s

By comparing eq.(1) and (2), we notice immediately that the amplitude is

A = 5.00 cm

For the period, we have to start from the relationship between angular frequency and period T:

\omega=\frac{2\pi}{T}

Using \omega = 5.0 rad/s and solving for T, we find

T=\frac{2\pi}{5 rad/s}=1.26 s

4 0
3 years ago
A horizontal block-spring system with the block on a frictionless surface has total mechanical energy E = 50.9 J and a maximum d
Llana [10]

(a) 2446 N/m

When the spring is at its maximum displacement, the elastic potential energy of the system is equal to the total mechanical energy:

E=U=\frac{1}{2}kA^2

where

U is the elastic potential energy

k is the spring constant

A is the maximum displacement (the amplitude)

Here we have

U = E = 50.9 J

A = 0.204 m

Substituting and solving the formula for k,

k=\frac{2E}{A^2}=\frac{2(50.9)}{(0.204)^2}=2446 N/m

(b) 50.9 J

The total mechanical energy of the system at any time during the motion is given by:

E = K + U

where

K is the kinetic energy

U is the elastic potential energy

We know that the total mechanical energy is constant: E = 50.9 J

We also know that at the equilibrium point, the elastic potential energy is zero:

U=\frac{1}{2}kx^2=0 because x (the displacement) is zero

Therefore the kinetic energy at the equilibrium point is simply equal to the total mechanical energy:

K=E=50.9 J

(c) 8.55 kg

The maximum speed of the block is v = 3.45 m/s, and it occurs when the kinetic energy is maximum, so when

K = 50.9 J (at the equilibrium position)

Kinetic energy can be written as

K=\frac{1}{2}mv^2

where m is the mass

Solving the equation for m, we find the mass:

m=\frac{2K}{v^2}=\frac{2(50.9)}{(3.45)^2}=8.55 kg

(d) 2.14 m/s

When the displacement is

x = 0.160 m

The elastic potential energy is

U=\frac{1}{2}kx^2=\frac{1}{2}(2446)(0.160)^2=31.3 J

So the kinetic energy is

K=E-U=50.9 J-31.3 J=19.6 J

And so we can find the speed through the formula of the kinetic energy:

K=\frac{1}{2}mv^2 \rightarrow v=\sqrt{\frac{2K}{m}}=\sqrt{\frac{2(19.6)}{8.55}}=2.14 m/s

(e) 19.6 J

The elastic potential energy when the displacement is x = 0.160 m is given by

U=\frac{1}{2}kx^2=\frac{1}{2}(2446)(0.160)^2=31.3 J

And since the total mechanical energy E is constant:

E = 50.9 J

the kinetic energy of the block at this point is

K=E-U=50.9 J-31.3 J=19.6 J

(f) 31.3 J

The elastic potential energy stored in the spring at any time is

U=\frac{1}{2}kx^2

where

k = 2446 N/m is the spring constant

x is the displacement

Substituting

x = 0.160 m

we find the elastic potential energy:

U=\frac{1}{2}kx^2=\frac{1}{2}(2446)(0.160)^2=31.3 J

(g) x = 0

The postion at that instant is x = 0, since it is given that at that instant  the system passes the equilibrium position, which is zero.

4 0
3 years ago
Other questions:
  • What is the angle of reflection
    14·2 answers
  • When monochromatic light shines perpendicularly on a soap film (n = 1.33) with air on each side, the second smallest nonzero fil
    5·1 answer
  • we measure a voltage difference of 5.0 V between two points on the conducting paper between two parallel conducting electrodes.
    6·1 answer
  • According to Einsteins explanation, what causes gravitation?
    13·1 answer
  • The human heart is a powerful and extremely reliable pump. Each day it takes in and discharges about 7500 L of blood. Assume tha
    9·1 answer
  • Which object has the most momentum?
    9·2 answers
  • A +26.3 uC charge qy is repelled by a force
    5·1 answer
  • What do you understand by the statement-The heat of vaporization of water is about 2,260 kJ/kg
    6·2 answers
  • 3. Which of the following is NOT a function of the liver?
    9·2 answers
  • Explain why energy from the sun cannot reach us by conduction or convection?
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!