Answer:
Explanation:18kt alloy contains
i) 75% of gold
rhogold=19.3g/cm^3
=75/100×19.3
=14.475g/cm^3
ii) 16% of silver
rhosilver=10.5g/cm^3
=16/100×10.5
=1.68g/cm^3
iii) 9% of copper
rhocopper =8.90g/cm^3
=9/100×8.9
=0.801g/cm^3
Overall density of 18kt gold
=(0.801+1.68+14.475)g/cm^3
=16.956g/cm^3
=17g/cm^3 to 3s.f
Answer:
Check the explanation
Explanation:
1) Pressure acting on the plug = Patm + P
Pressure = Patm + rho*g*h (Here h = D2)
Pressure = 101325 + 1000*9.8*7
Pressure = 169925 Pa
so, Force = PA
Force = 169925*pi*0.0152
Force = 120.1 N
Question:
A) C6H6
B) CH3CH2CH2CH2CH2COH6
C) NaCl
D) NH3
Answer:
The correct option is;
A) C₆H₆
Explanation:
Heat of fusion = 6.02 kJ/mol
Heat of vaporization =40.8 kJ/mol
Here, we analyze each of the options as follows
A) C₆H₆
Benzene has a melting point of 5.5° C and a boiling point of
80.1 ° C similar to water
Heat of fusion = 9.92 kJ/mol
Heat of vaporization =30.8kJ/mol
B) CH₃CH₂CH₂CH₂CH₂COH₆
The above compound is more likely solid
C) NaCl solid
D) NH₃ melting point = -77.73 °C boiling point = -33.34 °C
Of the above, the compounds the one that closely resembles water is C₆H₆
Answer:
r₁/r₂ = 1/2 = 0.5
Explanation:
The resistance of a wire is given by the following formula:
R = ρL/A
where,
R = Resistance of wire
ρ = resistivity of the material of wire
L = Length of wire
A = Cross-sectional area of wire = πr²
r = radius of wire
Therefore,
R = ρL/πr²
<u>FOR WIRE A</u>:
R₁ = ρ₁L₁/πr₁² -------- equation 1
<u>FOR WIRE B</u>:
R₂ = ρ₂L₂/πr₂² -------- equation 2
It is given that resistance of wire A is four times greater than the resistance of wire B.
R₁ = 4 R₂
using values from equation 1 and equation 2:
ρ₁L₁/πr₁² = 4ρ₂L₂/πr₂²
since, the material and length of both wires are same.
ρ₁ = ρ₂ = ρ
L₁ = L₂ = L
Therefore,
ρL/πr₁² = 4ρL/πr₂²
1/r₁² = 4/r₂²
r₁²/r₂² = 1/4
taking square root on both sides:
<u>r₁/r₂ = 1/2 = 0.5</u>
Answer:
It remains constant
Explanation:
As we know that buoyant force on an object given as
Fb = ρ Vd g
ρ= Density of fluid
Vd=Volume displace by body
g=10 m/s²
Fb =buoyant force
So from above we can say that buoyant force does not depends on the depth. It only depends on the fluid density and volume displace by body.
So when rock gets deeper and deeper the buoyant force will remain constant.
It remains constant