<span>the force that attracts a body toward the center of the earth, or toward any other physical body having mass. For most purposes Newton's laws of gravity apply, with minor modifications to take the general theory of relativity into account.</span>
Answer:
d_2 = 4d_1
Explanation:
The range or horizontal distance covered by a projectile projected with a velocity U at an angel of θ to the horizontal is given by
R = U²sin2θ/g
Let the range or horizontal distance of ball 1 with initial velocity U projected at an angle θ = 55° be
d_1 = U²sin2θ/g
Let the range or horizontal distance of ball 2 with initial velocity V = 2U projected at an angle θ = 55° be
d_2 = V²sin2θ/g
= (2U)²sin2θ/g
= 4U²sin2θ/g
= 4d_1 (since d_1 = U²sin2θ/g)
So, the ball 2 lands a distance d_2 = 4d_1 from the initial point.
Answer:
dart
Explanation:
dart and sun and water so that the plant be okay
Answer:
ELASTIC collision
kinetic energy is conservate
Explanation:
As the ball bounces to the same height, it can be stated that the impact with the floor is ELASTIC.
As the floor does not move the conservation of the moment
po = pf
-mv1 = m v2
- v1 = v2
So the speed with which it descends is equal to the speed with which it rises
Therefore the kinetic energy of the ball before and after the collision is the same