Answer:
(1) 2 ohms
(2) 12 Volts Across each resistor
(3) I₁ = 3 A, I₂ = 2 A, I₃ = 1 A
Explanation:
From the question,
(1) Equilvalent Resistance (Rt) for parallel connection is
1/Rt =(1/R₁)+ (1/R₂) + (1/R₃)
Where R₁ = 4 ohms, R₂ = 6 ohms, R₃ = 12 ohms
1/Rt = 1/4 +1/6 +1/12
1/Rt = (3+2+1)/12
1/Rt = 6/12
1/Rt = 1/2
Rt = 2 ohms.
(2) Since the resistors are connected in parallel, They will have the same potential difference across them,
Hence the P.d across each resistor = 12 Volts.
(3) For R₁,
I₁ = V/R₁ = 12/4
I₁ = 3 A.
For R₂,
I₂ = V/R₂
I₂ = 12/6
I₂ = 2 A
For R₃,
I₃ = V/R₃
I₃ = 12/12
I₃ = 1 A
2: It's not just the capillary action, but the pull from transpiration (the evaporation of water from the tree) that is used to pull water up from the roots.
<span>The second question needs context. Strong bonds alone won't cause tension. I don't see how adhesion is different. High vapour pressure could do it, but it's the difference in pressures that'd cause tension (and the resistance of that pressure by the surface). So, a low and high pressure would be needed. Poorly worded question :( </span>
<span>1: "Adhesion is the tendency of certain dissimilar molecules to cling together due to attractive forces." [1] </span>
<span>3: The other three answere would not work. Think of a boat. </span>
<span>3: If you push gas, it will be compressed(get smaller). If you push liquid it will push something else. Thus, liquids are good for transferring force. This is a hydraulic system.</span>
Answer:
<em>N</em><em> </em><em>is</em><em> </em><em>the</em><em> </em><em>SI</em><em> </em><em>unit</em><em> </em><em>of</em><em> </em><em>Newton</em>
<u>Answer:</u>
Lead
<u>Explanation:</u>
To get the density of the material, the formula would be:
mass divided by volume which is given by
.
Here in this problem, we are given a mass of
which occupies a volume of
.
So plugging the data in the above formula to find the density:
Density =
From the table, we can see that the material is Lead which has a density of 11.3c/cm^3.