The area of the Earth (Ae) that is irradiated by is given by:
Ae = 4πRe^2, where Re = Distance from Sun to Earth
Substituting;
Ae = 4π*(1.5*10^8*1000)^2 = 2.827*10^23 m^2
On the Earth, insolation (We) = Psun/Ae
Therefore,
Psun (Rate at which sun emits energy) = We*Ae = 1.4*2.827*10^23 = 3.958*10^23 kW = 3.958*10^26 W
Answer:
Explanation:
Assuming no friction between the roller coaster car and the hill, and neglecting air resistance, the kinetic energy the roller coaster car would have at the bottom of the hill would be equal to its gravitational potential energy at the top of the hill, by conservation of energy.
Answer:
She can swing 1.0 m high.
Explanation:
Hi there!
The mechanical energy of Jane (ME) can be calculated by adding her gravitational potential (PE) plus her kinetic energy (KE).
The kinetic energy is calculated as follows:
KE = 1/2 · m · v²
And the potential energy:
PE = m · g · h
Where:
m = mass of Jane.
v = velocity.
g = acceleration due to gravity (9.8 m/s²).
h = height.
Then:
ME = KE + PE
Initially, Jane is running on the surface on which we assume that the gravitational potential energy of Jane is zero (the height is zero). Then:
ME = KE + PE (PE = 0)
ME = KE
ME = 1/2 · m · (4.5 m/s)²
ME = m · 10.125 m²/s²
When Jane reaches the maximum height, its velocity is zero (all the kinetic energy was converted into potential energy). Then, the mechanical energy will be:
ME = KE + PE (KE = 0)
ME = PE
ME = m · 9.8 m/s² · h
Then, equallizing both expressions of ME and solving for h:
m · 10.125 m²/s² = m · 9.8 m/s² · h
10.125 m²/s² / 9.8 m/s² = h
h = 1.0 m
She can swing 1.0 m high (if we neglect dissipative forces such as air resistance).
Newton's first law of motion says something like "An object remains
in constant, uniform motion until acted on by an external force".
Constant uniform motion means no change in speed or direction.
If an object changes from rest to motion, that's definitely a change
of speed. So it doesn't remain in the state of constant uniform
motion (none) that it had when it was at rest, and that tells us
that an external force must have acted on it.
Answer:
Explanation:required formula is
W 1=F*S
W1=work done by Sam =?
F=force applied by sam=150N
S=displacement =10m
again
W2=F*S
W2=work done by friction =?
S=displacement =10m
F=friction =25N
W=W1-W2=net work done
please feel free to ask if you have any questions