1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bezzdna [24]
3 years ago
11

Using energy considerations, calculate the average force (in N) a 62.0 kg sprinter exerts backward on the track to accelerate fr

om 2.00 to 6.00 m/s in a distance of 25.0 m, if he encounters a headwind that exerts an average force of 30.0 N against him.
Physics
2 answers:
slava [35]3 years ago
7 0

Answer:

69.68 N

Explanation:

Work done is equal to change in kinetic energy

W = ΔK = Kf - Ki = \frac{1}{2} mv^{2} _{f}  - \frac{1}{2} mv^{2} _{i}

W = F_{total} .d

where m = mass of the sprinter

vf = final velocity

vi = initial velocity

W  = workdone

kf = final kinetic energy

ki = initial kinetic energy

d = distance traveled

Ftotal = total force

vf = 8m/s

vi= 2m/s

d = 25m

m = 60kg

inserting parameters to get:

W = ΔK = Kf - Ki = \frac{1}{2} mv^{2} _{f}  - \frac{1}{2} mv^{2} _{i}

F_{total} .d =\frac{1}{2} mv^{2} _{f}  - \frac{1}{2} mv^{2} _{i}

F_{total} = \frac{\frac{1}{2} mv^{2} _{f} - \frac{1}{2} mv^{2} _{i}}{d}

F_{total=} \frac{\frac{1}{2} X 62 X6^{2} -\frac{1}{2} X 62 X2^{2} }{25}

= 39.7

we know that the force the sprinter exerted F sprinter, the force of the headwind Fwind = 30N

F_{sprinter} = F_{total} + F_{wind}  = 39.7 + 30 = 69.68 N

photoshop1234 [79]3 years ago
7 0

Answer:

Force exerted by sprinter = 69.68 N

Explanation:

From work energy theorem, we know that, work done is equal to change in kinetic energy.

Thus,

W = ΔK = Kf - Ki = (1/2)m•(v_f)² - (1/2)m•(v_i)² - - - - eq(1)

Now,

Work done is also;

W = Force x Distance = F•d - - - (2)

From the question, we are given ;

v_f = 6 m/s

v_i = 2 m/s

d = 25m

m = 62 kg

Equating equation 1 and 2,we get;

(1/2)m•(v_f)² - (1/2)m•(v_i)² = F•d

Plugging in the relevant values to obtain ;

(1/2)(62)[(6)² - (2)²] = F x 25

31(36 - 4) = 25F

992 = 25F

F = 39.68 N

The force the sprinter exerts backward on the track will be the sum of this force and the headwind force.

Thus,

Force of sprinter = 39.68 + 30 = 69.68N

You might be interested in
Read the passage.
nevsk [136]

Answer:

d in my opinion is the most opitmal answer

Explanation:

aka a graph comparing distances traveled by objects thrown on Earth and the moon

7 0
3 years ago
Read 2 more answers
What the effect positively charged objects and negatively charged objects have on each other
marshall27 [118]

Answer:

often Positive and negative charges balance each other which gives an overall neutral charge. if they are unbalanced then it will result in static electricity.

4 0
3 years ago
Which type of graph is best for analyzing quantitative dependent and independent variables?
tensa zangetsu [6.8K]
A line graph or a bar graph
4 0
3 years ago
Describe the frequency and wavelength range of radio waves
sammy [17]

Answer:

Radio waves are a type of electromagnetic radiation with wavelengths in the electromagnetic spectrum longer than infrared light. They have frequencies from 300 GHz to as low as 3 kHz, and corresponding wavelengths from 1 millimeter to 100 kilometers.

Explanation:

3 0
3 years ago
Two 2.3 kg bodies, A and B, collide. The velocities before the collision are and . After the collision, . What are (a) the x-com
myrzilka [38]

Missing details in the question:

The velocities before collision are

u_A=(40i+49j) m/s

u_B=(35i+11j) m/s

After the collision:

v_A=(14i+21j) m/s

(a) 61 m/s

We can solve the problem by simply treating separately the x- and the y-components of the motion.

Here we want to analzye the motion along x. We have:

u_A = 40 m/s is the initial velocity of A along the x-direction

u_B = 35 m/s is the initial velocity of B along the x-direction

v_A = 14 m/s is the final velocity of A along the x-direction

v_B = ? is the final velocity of B along the x-direction

Since the total momentum along the x-direction must be conserved, we can write

mu_A + mu_B = mv_A + mv_B

where

m = 2.3 kg is the mass of the two bodies. Since the mass is the same, we can eliminate it from the equation,

u_A + u_B = v_A + v_B

And so, we find the final velocity of B along the x-direction:

v_B = u_A + u_B - v_A=40+35-14=61 m/s

(b) 39 m/s

Similarly to what we did in part a), here we analyze the conservation of momentum along the y-direction.

We have:

u_A = 49 m/s is the initial velocity of A along the y-direction

u_B = 11 m/s is the initial velocity of B along the y-direction

v_A = 21 m/s is the final velocity of A along the y-direction

v_B = ? is the final velocity of B along the y-direction

Since the total momentum along the y-direction must be conserved, we can write

mu_A + mu_B = mv_A + mv_B

Since the mass is the same, we can eliminate it from the equation,

u_A + u_B = v_A + v_B

And so, we find the final velocity of B along the y-direction:

v_B = u_A + u_B - v_A=49+11-21=39 m/s

c) +615 J

Here we have to find the total kinetic energy before and after the collision first.

First, we have to find the speed of each object before and after the collision. We have:

u_A = \sqrt{40^2+49^2}=63.2 m/s\\u_B = \sqrt{35^2+11^2}=36.7 m/s\\v_A = \sqrt{14^2+21^2}=25.2 m/s\\v_B = \sqrt{61^2+39^2}=72.4 m/s

So, the total kinetic energy before the collision was

K_i = \frac{1}{2}mu_A^2+\frac{1}{2}mu_B^2 = \frac{1}{2}(2.3)(63.2)^2+\frac{1}{2}(2.3)(36.7)^2=6143 J

While after the collision

K_f = \frac{1}{2}mv_A^2+\frac{1}{2}mv_B^2 = \frac{1}{2}(2.3)(25.2)^2+\frac{1}{2}(2.3)(72.4)^2=6758 J

So, the change in kinetic energy is

\Delta K = K_f - K_i = 6758-6143 = +615 J

(note that the system cannot gain kinetic energy in the collision, unless there is an external force acting on it)

3 0
3 years ago
Other questions:
  • Is the image formed on the retina real or virtual
    9·2 answers
  • If the light strikes the plastic (from the water) at an angle θw, at what angle θa does it emerge from the plastic (into the air
    6·2 answers
  • HELP ASAP!!!! SCIENCE LOVERS !!! What do the lines making a circle around the LOW-PRESSURE area indicate?
    12·2 answers
  • Currently, one major disadvantage of renewable energy resources is that renewable energy resources _____ than fossil fuels.
    5·2 answers
  • A little girl is going on the merry-go-round for the first time, and wants her 50kg mother to stand near to her on the ride 2.1m
    6·1 answer
  • A water skier is pulled behind a boat by a rope. The rope has a tension of 650 N and is at an angle of 27°. What is the y-compon
    5·2 answers
  • Which of these can NOT be negative?
    13·1 answer
  • A mass is attached to the end of a spring and set into oscillation on a horizontal frictionless surface by releasing it from a c
    10·2 answers
  • A geologist finds four layers of sedimentary rock. She determines that no geologic events have shifted the layers. She labels th
    14·2 answers
  • PLEASE HELP!!
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!