The object is maintaining a constant velocity
There are two types of change in matter: physical change and chemical change. ... This is called the Law of Conservation of Matter. It states that matter can never be created or destroyed, only changed and rearranged.
Answer:
Rate of change of magnetic flux
Explanation:
The induced current is equal to the ratio of induced emf to the resistance of the conductor.
According to the Faraday's law of electromagnetic induction, the induced emf is proportional to the rate of change of magnetic flux.
Answer:
1. 0.45 s.
2. 4.41 m/s
Explanation:
From the question given above, the following data were obtained:
Height (h) = 1 m
Time (t) =?
Velocity (v) =?
1. Determination of the time taken for the pencil to hit the floor.
Height (h) = 1 m
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =?
h = ½gt²
1 = ½ × 9.8 × t²
1 = 4.9 × t²
Divide both side by 4.8
t² = 1/4.9
Take the square root of both side
t = √(1/4.9)
t = 0.45 s.
Thus, it will take 0.45 s for the pencil to hit the floor.
2. Determination of the velocity with which the pencil hit the floor.
Initial velocity (u) = 0 m/s
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) = 0.45 s.
Final velocity (v) =?
v = u + gt
v = 0 + (9.8 × 0.45)
v = 0 + 4.41
v = 4.41 m/s
Thus, the pencil hit the floor with a velocity of 4.41 m/s
Answer:
t = 5.56 ms
Explanation:
Given:-
- The current carried in, Iin = 1.000002 C
- The current carried out, Iout = 1.00000 C
- The radius of sphere, r = 10 cm
Find:-
How long would it take for the sphere to increase in potential by 1000 V?
Solution:-
- The net charge held by the isolated conducting sphere after (t) seconds would be:
qnet = (Iin - Iout)*t
qnet = t*(1.000002 - 1.00000) = 0.000002*t
- The Volt potential on the surface of the conducting sphere according to Coulomb's Law derived result is given by:
V = k*qnet / r
Where, k = 8.99*10^9 ..... Coulomb's constant
qnet = V*r / k
t = 1000*0.1 / (8.99*10^9 * 0.000002)
t = 5.56 ms