(3 + 2i)(5 + i)
15 + 3i + 10i + 2i^2
15 + 13i - 2
13 + 13i
Answer:
(e^3 / e^2n)
Step-by-step explanation:
isn't this the same question
Answer:
v = 1/(1+i)
PV(T) = x(v + v^2 + ... + v^n) = x(1 - v^n)/i = 493
PV(G) = 3x[v + v^2 + ... + v^(2n)] = 3x[1 - v^(2n)]/i = 2748
PV(G)/PV(T) = 2748/493
{3x[1 - v^(2n)]/i}/{x(1 - v^n)/i} = 2748/493
3[1-v^(2n)]/(1-v^n) = 2748/493
Since v^(2n) = (v^n)^2 then 1 - v^(2n) = (1 - v^n)(1 + v^n)
3(1 + v^n) = 2748/493
1 + v^n = 2748/1479
v^n = 1269/1479 ~ 0.858
Step-by-step explanation:
1) 2a = 9b ⇒ 2:9
2) a + b = 3b ⇒ a = 2b ⇒ 1:2
Answers: 2:9 and 1:2
Answer:
yes
Step-by-step explanation: