Because if we don't you'll be hungry, if you don't eat for about a month you'll die
Answer:
F = 2.30 10⁴ N
Explanation:
The force required to link two gates must be equal to or greater than the electrostatic force of repulsion, because the protons have equal charges.
F = k q₁ q₂ / r²
Where k is the Coulomb constant that is worth 8.99 10⁹ N m² / C²
In this case the proton charge is 1.6 10⁻¹⁹ C and the distance between them is approximately the diameter of the core r = 10⁻¹⁵ m
Let's calculate
F = 8.99 10⁹ (1.6 10⁻¹⁹)² / (10⁻¹⁵)²
F = 2.30 10⁴ N
The bond strength must be equal to or greater than this value
Answer:
9 m
Explanation:
i did the test and got 100%
Answer:
17.54N in -x direction.
Explanation:
Amplitude (A) = 3.54m
Force constant (k) = 5N/m
Mass (m) = 2.13kg
Angular frequency ω = √(k/m)
ω = √(5/2.13)
ω = 1.53 rad/s
The force acting on the object F(t) = ?
F(t) = -mAω²cos(ωt)
F(t) = -2.13 * 3.54 * (1.53)² * cos (1.53 * 3.50)
F(t) = -17.65 * cos (5.355)
F(t) = -17.57N
The force is 17.57 in -x direction
(a) The stress in the post is 1,568,000 N/m²
(b) The strain in the post is 7.61 x 10⁻⁶
(c) The change in the post’s length when the load is applied is 1.9 x 10⁻⁵ m.
<h3>Area of the steel post</h3>
A = πd²/4
where;
d is the diameter
A = π(0.25²)/4 = 0.05 m²
<h3>Stress on the steel post</h3>
σ = F/A
σ = mg/A
where;
- m is mass supported by the steel
- g is acceleration due to gravity
- A is the area of the steel post
σ = (8000 x 9.8)/(0.05)
σ = 1,568,000 N/m²
<h3>Strain of the post</h3>
E = stress / strain
where;
- E is Young's modulus of steel = 206 Gpa
strain = stress/E
strain = (1,568,000) / (206 x 10⁹)
strain = 7.61 x 10⁻⁶
<h3>Change in length of the steel post</h3>
strain = ΔL/L
where;
- ΔL is change in length
- L is original length
ΔL = 7.61 x 10⁻⁶ x 2.5
ΔL = 1.9 x 10⁻⁵ m
Learn more about Young's modulus of steel here: brainly.com/question/14772333
#SPJ1