If the beam is in static equilibrium, meaning the Net Torque on it about the support is zero, the value of x₁ is 2.46m
Given the data in the question;
- Length of the massless beam;

- Distance of support from the left end;

- First mass;

- Distance of beam from the left end( m₁ is attached to );

- Second mass;

- Distance of beam from the right of the support( m₂ is attached to );

Now, since it is mentioned that the beam is in static equilibrium, the Net Torque on it about the support must be zero.
Hence, 
we divide both sides by 

Next, we make
, the subject of the formula
![x_1 = x - [ \frac{m_2x_2}{m_1} ]](https://tex.z-dn.net/?f=x_1%20%3D%20x%20-%20%5B%20%5Cfrac%7Bm_2x_2%7D%7Bm_1%7D%20%5D)
We substitute in our given values
![x_1 = 3.00m - [ \frac{61.7kg\ * \ 0.273m}{31.3kg} ]](https://tex.z-dn.net/?f=x_1%20%3D%203.00m%20-%20%5B%20%5Cfrac%7B61.7kg%5C%20%2A%20%5C%200.273m%7D%7B31.3kg%7D%20%5D)


Therefore, If the beam is in static equilibrium, meaning the Net Torque on it about the support is zero, the value of x₁ is 2.46m
Learn more; brainly.com/question/3882839
Answer:
The speed of the electron is
.
Explanation:
Given that,
The magnitude of electric field, 
The magnitude of magnetic field, B = 0.516 T
Both the magnetic and electric fields are acting on the moving electron. Then, the magnitude of electric field and magnetic field is balanced such that :

or

So, the speed of the electron is
. Hence, this is the required solution.
Answer:
D = 25 miles
Explanation:
To solve this problem, we just need to know how much time it took both bicyclists to collide and that will be the same amount of time that the bee flew at 25miles per hour. With those values we could calculate the distance it traveled.
Since both bicyclists collide, we know that Xa=Xb, so:
Xa = V*t = 10*t and Xb = 20 - V*t = 20 - 10*t
10*t = 20 - 10*t Solving for t:
t = 1 hour Now we can calculate the distance for the bee:
D = Vbee * t = 25 * 1 = 25 miles
Answer:
a) 141.6m
b) 8.4m/s
Explanation:
a) to find the total displacement you use the following formula for each trajectory. Next you sum the results:

hence, the total distance is 141.6m
b) the mean velocity of the total trajectory is given by:

hence, the mean velocity is 8.4 m/s