Answer:
The speed of the 11.5kg block after the collision is V≅4.1 m/s
Explanation:
ma= 4.8 kg
va1= 7.3 m/s
va2= - 2.5 m/s
mb= 11.5 kg
vb1= 0 m/s
vb2= ?
vb2= ( ma*va1 - ma*va2) / mb
vb2= 4.09 m/s ≅ 4.1 m/s
Maybe it is, maybe it isn't. We can't tell, until we see what "this" is.
Show us a drawing, an equation, an expression, a statement ... something !
The equation that most accurately represents the model of cellular respiration is: C6H12O6 (sugar) + 6O2 (oxygen) = 6CO2 (carbon dioxide) + 6H2O (water) + energy.
<h3>
CELLULAR RESPIRATION:</h3>
Cellular respiration is the process whereby living organisms obtain energy by breaking down food molecules in their cells.
The process of cellular respiration breaks down sugar molecules (glucose) in the presence of oxygen to produce carbon dioxide and water as products, as well as energy in form of ATP.
Therefore, the equation that most accurately represents the model of cellular respiration is: C6H12O6 (sugar) + 6O2 (oxygen) = 6CO2 (carbon dioxide) + 6H2O (water) + energy.
Learn more about cellular respiration at: brainly.com/question/12671790?referrer=searchResults
Answer:
The average power provided by the tension in the cable pulling the lift is = 714 W
Explanation:
Given data
Mass = 71 kg
Change in height = 123 m
When the lift moves in upward direction then in that case kinetic energy is constant & only potential energy changes.
Change in potential energy Δ PE = m g (
)
Δ PE = 71 × 9.81 × 123
Δ PE = 85670.73 J
Time = 2 min = 120 sec
So average power is given by



Therefore the average power provided by the tension in the cable pulling the lift is = 714 W
Answer:
The amplitude of the wave is 0.02 m.
Explanation:
Given that,
Maximum speed = 2.0 m/s
Maximum acceleration = 200 m/s²
We need to calculate the angular frequency
Using formula of angular frequency

Put the value into the formula


We need to calculate the amplitude of the wave
Using formula of velocity


Put the value into the formula


Hence, The amplitude of the wave is 0.02 m.