C because they are both going in a constant speed
Notice that
<em>B</em> = 4<em>i</em> + 6<em>j</em> - 2<em>k</em> = 2 (2<em>i</em> + 3<em>j</em> - <em>k</em>) = 2<em>A</em>
so both vectors point in the same direction and the angle between them is (A) 0°.
A resultante das duas forças será zero, já q os sentidos são opostos e sãos iguais em módulo, elas se anulam. Logo, se a força resultante é zero, e F=ma, aceleração também será igual a zero.
Answer:
The phase angle is 0.0180 rad.
(c) is correct option.
Explanation:
Given that,
Voltage = 12 V
Angular velocity = 50 Hz
Capacitance 
Inductance 
Resistance 
We need to calculate the impedance
Using formula of impedance



We need to calculate the phase angle
Using formula of phase angle



Hence, The phase angle is 0.0180 rad.
Answer:
a) dh/dt = -44.56*10⁻⁴ cm/s
b) dr/dt = -17.82*10⁻⁴ cm/s
Explanation:
Given:
Q = dV/dt = -35 cm³/s
R = 1.00 m
H = 2.50 m
if h = 125 cm
a) dh/dt = ?
b) dr/dt = ?
We know that
V = π*r²*h/3
and
tan ∅ = H/R = 2.5m / 1m = 2.5 ⇒ h/r = 2.5
⇒ h = (5/2)*r
⇒ r = (2/5)*h
If we apply
Q = dV/dt = -35 = d(π*r²*h/3)*dt
⇒ d(r²*h)/dt = 3*35/π = 105/π ⇒ d(r²*h)/dt = -105/π
a) if r = (2/5)*h
⇒ d(r²*h)/dt = d(((2/5)*h)²*h)/dt = (4/25)*d(h³)/dt = -105/π
⇒ (4/25)(3*h²)(dh/dt) = -105/π
⇒ dh/dt = -875/(4π*h²)
b) if h = (5/2)*r
Q = dV/dt = -35 = d(π*r²*h/3)*dt
⇒ d(r²*h)/dt = d(r²*(5/2)*r)/dt = (5/2)*d(r³)/dt = -105/π
⇒ (5/2)*(3*r²)(dr/dt) = -105/π
⇒ dr/dt = -14/(π*r²)
Now, using h = 125 cm
dh/dt = -875/(4π*h²) = -875/(4π*(125)²)
⇒ dh/dt = -44.56*10⁻⁴ cm/s
then
h = 125 cm ⇒ r = (2/5)*h = (2/5)*(125 cm)
⇒ r = 50 cm
⇒ dr/dt = -14/(π*r²) = - 14/(π*(50)²)
⇒ dr/dt = -17.82*10⁻⁴ cm/s