So you can have a understanding of what you are doing and figure out your overall goal
The circumference of a circle is (pi) x (diameter)
The circumference of the cupcake is (pi) x (5 cm)
Halfway around is (1/2) x (pi) x (5 cm) = (2.5 pi cm) = <em>about 7.85 cm</em>
The 'why' appears up above, in the first 2 lines of this solution.
The distance mirror M2 must be moved so that one wavelength has produced one more new maxima than the other wavelength is;
<u><em>L = 57.88 mm</em></u>
<u><em /></u>
We are given;
Wavelength 1; λ₁ = 589 nm = 589 × 10⁻⁹ m
Wavelength 2; λ₂ = 589.6 nm = 589.6 × 10⁻⁹ m
We are told that L₁ = L₂. Thus, we will adopt L.
Formula for the number of bright fringe shift is;
m = 2L/λ
Thus;
For Wavelength 1;
m₁ = 2L/(589 × 10⁻⁹)
For wavelength 2;
m₂ = 2L/(589.6)
Now, we are told that one wavelength must have produced one more new maxima than the other wavelength. Thus;
m₁ - m₂ = 2
Plugging in the values of m₁ and m₂ gives;
(2L/589) - (2L/589.6) = 2
divide through by 2 to get;
L[(1/589) - (1/589.6)] = 1
L(1.728 × 10⁻⁶) = 1
L = 1/(1.728 × 10⁻⁶)
L = 578790.67 nm
L = 57.88 mm
Read more at; brainly.com/question/17161594
Answer:
Explanation:
magnetic field due to circular wire
= μ₀ i / 2r
i is current and r is radius of coil .
Magnetic fields due to inner coil
μ₀ x 20 / (2 x 9.5 x 10⁻²)
Magnetic field due to outer coil
= μ₀ x I / (2 x 19 x 10⁻²) , I is the current to be calculated
Total field
μ₀ x 20 /( 2 x 9.5 x 10⁻²) +μ₀ x I / (2 x 19 x 10⁻²) = 0
20 + I /2 = 0
I = - 40 A
Current required is 40 A , and it will be in opposite direction.