1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lubov Fominskaja [6]
3 years ago
7

Where did the astronaut leave their cellphone?

Physics
1 answer:
Eddi Din [679]3 years ago
5 0

Answer:

The answer to your question is The cellphone is in Neptune

Explanation:

Data

Weight = 1.83 N

mass = 165 g

Process

1.- Convert the mass in grams to kilograms

                 1000 g ---------------- 1 kg

                   165 g  ---------------  x

                   x = (165 x 1) / 1000

                   x = 0.165 kg

2.- Calculate the weight of the cell phone in the moon and planets.

Moon = 1.6 x 0.165 = 0.264N

Mars = 3.7 x 0.165 = 0.611 N

Jupiter = 23.1 x 0.165 = 3.8 B

Neptune = 11.1 x 0.165 = 1.83N

3.- The Astronaut forgot the cellphone in Neptune. Because the phone report a weight of the cell phone equal to the weight calculated in Neptune.

You might be interested in
Because of the costs involved in maintaining high temperatures and pressure, nuclear method for generating electrical energy. is
erastova [34]

Answer:

c number is a answer boyyyyyy or girllllllll

5 0
4 years ago
Read 2 more answers
 I will mark you as brainliest if you answer correctly
aleksklad [387]
(A) We can solve the problem by using Ohm's law, which states:
V=IR
where
V is the potential difference across the electrical device
I is the current through the device
R is its resistance
For the heater coil in the problem, we know V=220 V and R=220 \Omega, therefore we can rearrange Ohm's law to find the current through the device:
I= \frac{V}{R}= \frac{220 V}{220 \Omega}=1 A

(B) The resistance of a conductive wire depends on three factors. In fact, it is given by:
R= \rho \frac{L}{A}
where
\rho is the resistivity of the material of the wire
L is the length of the wire
A is the cross-sectional area of the wire
Basically, we see that the longer the wire, the larger its resistance; and the larger the section of the wire, the smaller its resistance.
6 0
3 years ago
Speakers A and B are vibrating in phase. They are directly facing each other, are 8.2 m apart, and are each playing a 78.0 Hz to
Stels [109]

Answer:6.298,4.1,1.9015

Explanation:

Wavelength=\frac{velocity of sound }{frequency}

=\frac{343}{78}=4.397 m

Distance of 3rd speaker from speaker A is x

From B 78-x

Difference between the distances must be a whole number of wavelengths

First

x-\left ( 8.2-x\right )=4.397    for 1 st wavelength

2x=8.2+4.397=12.597

x=6.298m

second

For zero wavelength

x-\left ( 8.2-x\right )=0

2x=8.2

x=4.1m

Third

\left ( 8.2-x\right )-x=4.397

x=1.9015 m

6 0
3 years ago
If an object is placed between a convex lens and its focal point, which type of image will be produced?
Andreas93 [3]
<span>virtual, upright, and magnified</span>
8 0
3 years ago
Read 2 more answers
A 2.0-kg object moving with a velocity of 5.0 m/s in the positive x direction strikes and sticks to a 3.0-kg object moving with
Andrej [43]

Answer:

5.4 J.

Explanation:

Given,

mass of the object, m = 2 Kg

initial speed, u = 5 m/s

mass of another object,m' = 3 kg

initial speed of another orbit,u' = 2 m/s

KE lost after collusion = ?

Final velocity of the system

Using conservation of momentum

m u + m'u' = (m + m') V

2 x 5 + 3 x 2 = ( 2 + 3 )V

16 = 5 V

V = 3.2 m/s

Initial KE = \dfrac{1}{2}mu^2 + \dfrac{1}{2}m'u'^2

              = \dfrac{1}{2}\times 2\times 5^2 + \dfrac{1}{2}\times 3 \times 2^2

              = 31 J

Final KE = \dfrac{1}{2} (m+m')V^2 = \dfrac{1}{2}\times 5 \times 3.2^2 = 25.6 J

Loss in KE = 31 J - 25.6 J = 5.4 J.

4 0
4 years ago
Other questions:
  • The distance between your and your is displacement
    12·1 answer
  • A man stands on the roof of a building of height 13.0m and throws a rock with a velocity of magnitude 33.0m/s at an angle of 25.
    14·1 answer
  • At time t=0 a grinding wheel has an angular velocity of 28.0 rad/s . It has a constant angular acceleration of 35.0 rad/s2 until
    5·1 answer
  • Pleaseeee hurry!!!
    7·1 answer
  • What is the sl unit for momentum
    13·1 answer
  • What direction is centrifugal force to the force that holds the object in a round path of motion?
    7·1 answer
  • A certain part of a flat screen TV has a thickness of 150 nanometers. How many meters is this?
    8·1 answer
  • Amal uses a pulley to lift a concrete block. She applies a force of of 95N. The force exerted on the concrete block is 95N. What
    5·1 answer
  • A soccer player runs 75m in a straight line down a soccer field in 11 seconds. What
    13·1 answer
  • A learner has a mixture of sand and water. The best method to separate this solution would be ?
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!