Answer:
Mechanical Advantage Formula
The efficiency of a machine is equal to the ratio of its output to its input. It is also equal to the ratio of the actual and theoretical MAs. But, it does not mean that low-efficiency machines are of limited use. An automobile jack, for example, have to overcome a great deal of friction and therefore it has low efficiency. But still, it is extremely valuable because small effort can be applied to lift a great weight.
Also, in another way the mechanical advantage is the force generated by a machine to the force applied to it which is applied in assessing the performance of the machine.
The mechanical advantage formula is:
MA = FBFA
Explanation:
MAmechanical advantageFBthe force of the object
FAthe effort to overcome the force
Answer:
<u>No</u>.
Explanation:
They are not all the same. Moreover, using a fluid that is not approved by the vehicle manufacturer will void the transmission warranty.
Answer:
18 kJ
Explanation:
Given:
Initial volume of air = 0.05 m³
Initial pressure = 60 kPa
Final volume = 0.2 m³
Final pressure = 180 kPa
Now,
the Work done by air will be calculated as:
Work Done = Average pressure × Change in volume
thus,
Average pressure =
= 120 kPa
and,
Change in volume = Final volume - Initial Volume = 0.2 - 0.05 = 0.15 m³
Therefore,
the work done = 120 × 0.15 = 18 kJ
Answer:
0.0406 m/s
Explanation:
Given:
Diameter of the tube, D = 25 mm = 0.025 m
cross-sectional area of the tube = (π/4)D² = (π/4)(0.025)² = 4.9 × 10⁻⁴ m²
Mass flow rate = 0.01 kg/s
Now,
the mass flow rate is given as:
mass flow rate = ρAV
where,
ρ is the density of the water = 1000 kg/m³
A is the area of cross-section of the pipe
V is the average velocity through the pipe
thus,
0.01 = 1000 × 4.9 × 10⁻⁴ × V
or
V = 0.0203 m/s
also,
Reynold's number, Re = 
where,
ν is the kinematic viscosity of the water = 0.833 × 10⁻⁶ m²/s
thus,
Re = 
or
Re = 611.39 < 2000
thus,
the flow is laminar
hence,
the maximum velocity = 2 × average velocity = 2 × 0.0203 m/s
or
maximum velocity = 0.0406 m/s