(4.4273 × 10¹⁰)/(5.3668 × 10³) = 0.824 94 × 10⁷ = 8.2494 × 10⁶
The formula of compound is LiClO4.3H2O
<em><u>calculation</u></em>
- <em><u> </u></em>find the mole of each element
that is moles for Li,Cl,O and that of H2O
- moles = % composition/ molar mass
For Li = 4.330/ 6.94 g/mol= 0.624 moles
Cl=22.10/35.5=0.623 moles
39.89/16 g/mol =2.493 moles
H20= 33.69/18 g/mol= 1.872 moles
- find the mole ratio by dividing each moles by smallest number of mole ( 0.624 moles)
that is for Li= 0.624/0.623= 1
Cl= 0.623/0.623=1
O = 2.493/0.623 =4
H2O= 1.872/0.623=3
<h3>Therefore the formula=LiClO4.3H2O</h3><h3 />
Well, when an atom attains a stable valence electron, it means that the outer electrons are complete and so cannot attain any more electrons. For the first shell, it is complete when it has 2 electrons, the second shell is complete when it has 8 electrons, all the other shells also have a particular number when complete. Anyway, i believe the answer is HYDROGEN because when HYDROGEN combines with another atom of HYDROGEN, the outer shell is completed. This is because HYDROGEN has only 1 electron. If the two HYDROGENS, which both have 1 electron combine, they make the electrons 2, which is complete for the first shell, HYDROGEN ends in the first shell. Since the electrons become 2, the shell is at stable valence. In all the other options, this happens;
NEON- It has 10 electrons, 2 in the first shell and 8 in the second. So the the shells are already complete, so it can't bond with any thing, which is completely against the question.
RADON- Radon has 86 electrons.
HELIUM- Helium has 2 electrons, so the shell is already full, and cannot bond, so it goes against the question. The question says BY BONDING.
So the answer is definitely 4) HYDROGEN
Hope i helped. Have a nice day, by the way, i'm very sure it's hydrogen.
Answer:
B and C
Explanation:
When we have to do a buffer solution we always have to choose the reaction that has the <u>pKa closer to the desired pH value</u>. When we find the pKa values we will obtain:
![pKa_1=-Log[6.9x10^-^3]=2.16](https://tex.z-dn.net/?f=pKa_1%3D-Log%5B6.9x10%5E-%5E3%5D%3D2.16)
![pKa_2=-Log[6.2x10^-^8]=7.20](https://tex.z-dn.net/?f=pKa_2%3D-Log%5B6.2x10%5E-%5E8%5D%3D7.20)
![pKa_3=-Log[4.8x10^-^13]=12.31](https://tex.z-dn.net/?f=pKa_3%3D-Log%5B4.8x10%5E-%5E13%5D%3D12.31)
The closer value is pKa2 with a value of 7.2. Therefore we have to use the second reaction. In which
is the <u>acid</u> and
is the <u>base</u>. Therefore the answer for the first question is B and the answer for the second question is C.