Answer:
The final velocity of the object after 2 seconds is 30 m/s
Explanation:
Given;
constant downward acceleration, a = 10 m/s²
initial velocity of the object falling down, v = 10 m/s
time of fall, t = 2 s
The final velocity of the object is given by;
v = u + at
where;
v is the final velocity
v = 10 + (10)(2)
v = 10 + 20
v = 30 m/s
Therefore, the final velocity of the object after 2 seconds is 30 m/s
B a bar magnet has a north and a south pole.
Answer:
Earth: 22.246 N
Moon: 3.71 N
Jupiter: 58.72 N
Explanation:
The mass of an object will remain constant in any location, its weight however, can fluctuate depending on its location. For example, a golf ball will weigh less on the moon, but its mass will not be different if it was on earth.
To calculate anything, we need to convert to standard measurements.
5.00 lbs = 2.27 kg
On earth, gravity is measured to be 9.8 m/s², so the weight in Newtons on Earth would be: (2.27 kg) x (9.8 m/s²) = 22.246 N
Repeated on the moon where gravity is (9.8 m/s²) x (1/6) = 1.633 m/s², so the weight in Newtons on the moon would be: (2.27 kg) x (1.633 m/s²) = 3.71 N
Repeated on Jupiter where gravity is (9.8 m/s²) x (2.64) = 25.87 m/s², so the wight in Newtons on Jupiter would be: (2.27 kg) x (25.87 m/s²) = 58.72 N
Answer:
A.c
Explanation:
The chromosphere is above the photosphere, the visible "surface" of the Sun. It lies below the solar corona, the Sun's upper atmosphere, which extends many thousands of kilometers above the chromosphere into space. The plasma (electrically charged gas) in the chromosphere has a very low density.
In basic terms it is the 2nd one out from the core.
<span>All of the waves in the electromagnetic spectrum are transverse waves.</span>