Answer:
1.4936 trillion meters
Explanation:
From an average distance of 886 million miles Saturn is 9.5 astronomical units away from the sun
Answer:
Before start of slide velocity will be 14.81 m/sec
Explanation:
We have given coefficient of static friction 
Angle of inclination is equal to 


Radius is given r = 28 m
Acceleration due to gravity 
We know that 



So before start of slide velocity will be 14.81 m/sec
Answer:
Explanation:
For circular path in magnetic field
mv² / R = Bqv ,
m is mass , v is velocity , R is radius of circular path , B is magnetic field , q is charge on the particle .
a )
R = mv / Bq
If v is changed to 2v , keeping other factors unchanged , R will be doubled
b )
magnitude of acceleration inside field
= v² / R
= Bqv / m
As v is doubled , acceleration will also be doubled
c )
If T be the time inside the magnetic field
T = π R / v
= π / v x mv / Bq
= π m / Bq
As is does not contain v that means T remains unchanged .
d )
Net force acting on electron
= m v² / R = Bqv
Net force = Bqv
As v becomes twice force too becomes twice .
So a . b , d are correct answer.
Answer:
Explanation:
reading of scale = reaction force of surface R
centripetal force = R - mg = m v² / R , m is mass , v is velocity and R is radius of the circular path .
R = mg + m v² / R
given ,
m v² / R = .80 mg
v² = .80 x g x R
= .8 x 9.8 x 9 = 70.56
v = 8.4 m /s
To solve this problem we will apply the concepts related to the conservation of the Momentum. For this purpose we will define the momentum as the product between mass and velocity, and by conservation the initial momentum will be equal to the final momentum. Mathematically this is,

Here,
= Mass of Dan and Skateboard respectively
= Initial velocity of Dan and Skateboard respectively
= Final velocity of Dan and Skateboard respectively
Our values are:
Dan's mass

Mass of the skateboard

Both have the same initial velocity, then

Final velocity of Skateboard is

Rearranging to find the final velocity of Dan we have then,



Replacing,


Therefore Dan will touch the ground at a speed of 3.76m/s