Answer:
d) The stone will have about 50 joules of kinetic energy and 0 joules of potential energy .
Explanation:
Given :
Initial Potential energy ,
.
Initial Kinetic energy ,
. ( because ball is in rest )
Now , we know , kinetic energy is maximum when an object reaches ground .
Also , potential energy is zero when an object is in ground .
We know , by conservation of energy :
Initial total energy = Final total energy

Therefore , option d) is correct .

Here's the solution ~
As we know, Displacement =



<h3>
OR </h3>

The car travelled 1700 meters ( 1.7 km )
The power required is 1.6 kW.
Answer:
Explanation:
Power is defined as the amount of work done on any object for a given time interval. In other words, power is the amount of force required to move an object in a given period of time.
Power = Work done / time taken for that work done.
Here the force is given as 800 N and the displacement is given as 2.5 m, while the time required for the displacement is given as 1.22 seconds.
So the power will be ratio of the product of force acting on the weightlifter, displacement of the weight to the time taken for that displacement.
Power = (800×2.5)/1.22 =1639 W
So the power required is 1.6 kW.
Answer:
d.20760 J
Explanation:
We are given that
Mass of cart=m=100 kg
At the top,h=22 m
Amount of energy convert into heat due to friction=E=800 J
We have to find the kinetic energy at the bottom of the ramp.
Potential energy drop=mgh=
Kinetic energy at the bottom=Potential energy drop-energy lost due to friction
Kinetic energy at the bottom =(21560-800) J
Kinetic energy at the bottom=20760 J
Hence, the kinetic energy at the bottom of the ramp=20760 J
d.20760 J