1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
xeze [42]
3 years ago
14

An eight-turn coil encloses an elliptical area having a major axis of 40.0 cm and a minor axis of 30.0 cm. The coil lies in the

plane of the page and carries a clockwise current of 6.20 A. If the coil is in a uniform magnetic field of 1.98 10-4 T directed toward the left of the page, what is the magnitude of the torque on the coil? Hint: The area of an ellipse is A = ?ab, where a and b are, respectively, the semimajor and semiminor axes of the ellipse.
Physics
1 answer:
Darina [25.2K]3 years ago
5 0

Answer:

9.25 x 10^-4 Nm

Explanation:

number of turns, N = 8

major axis = 40 cm

semi major axis, a = 20 cm = 0.2 m

minor axis = 30 cm

semi minor axis, b = 15 cm = 0.15 m

current, i = 6.2 A

Magnetic field, B = 1.98 x 10^-4 T

Angle between the normal and the magnetic field is 90°.

Torque is given by

τ = N i A B SinФ

Where, A be the area of the coil.

Area of ellipse, A = π ab = 3.14 x 0.20 x 0.15 = 0.0942 m²

τ = 8 x 6.20 x 0.0942 x 1.98 x 10^-4 x Sin 90°

τ = 9.25 x 10^-4 Nm

thus, the torque is 9.25 x 10^-4 Nm.

You might be interested in
PHYSICS CIRCUIT QUESTION PLEASE HELP!! 20 Points!
dimulka [17.4K]
This really calls for a blackboard and a hunk of chalk, but
I'm going to try and do without.

If you want to understand what's going on, then PLEASE
keep drawing visible as you go through this answer, either
on the paper or else on a separate screen.

The energy dissipated by the circuit is the energy delivered by
the battery.  We'd know what that is if we knew  I₁ .  Everything that
flows in this circuit has to go through  R₁ , so let's find  I₁  first.

-- R₃ and R₄ in series make 6Ω.
-- That 6Ω in parallel with R₂ makes 3Ω.
-- That 3Ω in series with R₁ makes 10Ω across the battery.
--  I₁ is  10volts/10Ω  =  1 Ampere.

-- R1:  1 ampere through 7Ω ... V₁ = I₁ · R₁ = 7 volts .

-- The battery is 10 volts. 
    7 of the 10 appear across R₁ .
   So the other 3 volts appear across all the business at the bottom.

-- R₂:  3 volts across it = V₂. 
           Current through it is  I₂ = V₂/R₂ = 3volts/6Ω = 1/2 Amp.

-- R3 + R4:  6Ω in the series combination
                     3 volts across it
                     Current through it is I = V₂/R = 3volts/6Ω = 1/2 Ampere

--  Remember that the current is the same at every point in
a series circuit.  I₃  and  I₄  must be the same 1/2 Ampere,
because there's no place in the branch where electrons can
be temporarily stored, no place for them to leak out, and no
supply of additional electrons.

-- R₃:  1/2 Ampere through it = I₃ .
           1/2 Ampere through 2Ω ... V₃ = I₃ · R₃ = 1 volt

-- R₄:  1/2 Ampere through it = I₄
           1/2 Ampere through 4Ω ... V₄ = I₄ · R₄ = 2 volts

Notice that  I₂  is 1/2 Amp, and (I₃ , I₄) is also 1/2 Amp.
So the sum of currents through the two horizontal branches is 1 Amp,
which exactly matches  I₁  coming down the side, just as it should.
That means that at the left side, at the point where R₁, R₂, and R₃ all
meet, the amount of current flowing into that point is the same as the
amount flowing out ... electrons are not piling up there.

Concerning energy, we could go through and calculate the energy
dissipated by each resistor and then addum up.  But why bother ?
The energy dissipated by the resistors has to come from the battery,
so we only need to calculate how much the battery is supplying, and
we'll have it.

The power supplied by the battery  = (voltage) · (current)

                                                         =  (10 volts) · (1 Amp) = 10 watts .

"Watt" means "joule per second".
The resistors are dissipating 10 joules per second,
and the joules are coming from the battery.

             (30 minutes) · (60 sec/minute)  =  1,800 seconds

             (10 joules/second) · (1,800 seconds)  =  18,000 joules  in 30 min

The power (joules per second) dissipated by each individual resistor is

                       P  =  V² / R
             or
                       P  =  I² · R ,

whichever one you prefer.  They're both true.

If you go through the 4 resistors, calculate each one, and addum up, you'll
come out with the same 10 watts / 18,000 joules total. 

They're not asking for that.  But if you did it and you actually got the same
numbers as the battery is supplying, that would be a really nice confirmation
that all of your voltages and currents are correct.
7 0
2 years ago
A. What is the S.l unit of acceleration?<br>m<br>m/s o<br>m/s2<br>N​
kifflom [539]

Explanation:

The SI unit of acceleration is the metre per second squared (m s−2); or "metre per second per second", as the velocity in metres per second changes by the acceleration value, every second.

8 0
3 years ago
Consider two antennas separated by 9.00 m that radiate in phase at 120 MHz, as described in Exercise 35.3. A receiver placed 150
alexgriva [62]

Answer:

\phi=4.52 rad

Explanation:

From the question we are told that

Distance b/e antenna's d=9.00m

Frequency of antenna RadiationF_r=120 MHz \approx 120*10^6Hz

Distance from receiver d_r=150m

Intensity of Receiver i= 10

Distance difference of the receiver b/w antenna's (r^2-r^1)=1.8m

Generally the equation for Phase difference \phi is mathematically given by

 \phi=\frac{2\pi}{\frac{c}{f_r}} *(r^2-r^1)

 \phi=\frac{2*\pi}{\frac{3*10^{8}}{120*10^6}} *1.8

 \phi=\frac{4\pi}{5}  *1.8

<h3>  \phi=4.52 rad</h3>

Therefore phase difference f between the two radio waves produced by this path difference is given as

\phi=4.52 rad

7 0
2 years ago
A vacuum tube diode consists of concentric cylindrical electrodes, the negative cathode and the positive anode. Because of the a
DENIUS [597]

Answer:

   C = 4,174 10³ V / m^{3/4} ,  E = 7.19 10² / ∛x,    E = 1.5  10³ N/C

Explanation:

For this exercise we can calculate the value of the constant and the electric field produced,

Let's start by calculating the value of the constant C

           V = C x^{4/3}

           C = V / x^{4/3}

            C = 220 / (11 10⁻²)^{4/3}

            C = 4,174 10³ V / m^{3/4}

To calculate the electric field we use the expression

            V = E dx

             E = dx / V

             E = ∫ dx / C x^{4/3}

            E = 1 / C  x^{-1/3} / (- 1/3)

            E = 1 / C (-3 / x^{1/3})

We evaluate from the lower limit x = 0 E = E₀ = 0 to the upper limit x = x, E = E

            E = 3 / C     (0- (-1 / x^{1/3}))

            E = 3 / 4,174 10³   (1 / x^{1/3})

           E = 7.19 10² / ∛x

for x = 0.110 cm

          E = 7.19 10² /∛0.11

          E = 1.5  10³ N/C

6 0
3 years ago
the brakes on a car do 240000j of work in stopping the car. if the car travels a distance of 40m while the brakes re being appli
Tpy6a [65]
A joule is one Newton of force applied over a meter.
For every meter, the brakes put 240000N of force (N=Newtons).
For 40m, multiply the Newtons by 40.
240000N*40=9600000N
3 0
3 years ago
Other questions:
  • 1.D 2.A 3.A 4.im not sure please help 5.false One light bulb in a string of lights goes out. This causes all of the other lights
    7·1 answer
  • 1. Find the kinetic energy of the uniform circular cone of height h, base radius R, and mass M. Rotating with the angular veloci
    7·2 answers
  • Waves that make up the visible part of the electromagnetic spectrum have
    12·1 answer
  • Below are birds-eye views of six identical toy cars moving to the right at 2 m/s. Various forces act on the cars with magnitudes
    5·1 answer
  • In a building with 10.000 cubic feet where the air changes every two hours, what the rate of air change? A. 167.7 cfm B. 83.3 cf
    15·2 answers
  • The process of examining a change in one variable in a model while assuming that all the other variables remain constant is call
    6·1 answer
  • What happens when a dog sleep do they have dreams to ?
    11·1 answer
  • Define a combination circuit.
    12·1 answer
  • Help on these two thanks
    7·2 answers
  • If the volume of the cylinder is to be calculated, what would be the total standard deviation of the volume?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!