C because of the positioning of the initial ray of refraction
Answer:
0.71 m/s
Explanation:
We find the time it takes the stone to hit the water.
Using y = ut - 1/2gt² where y = height of bridge, u = initial speed of stone = 0 m/s, g = acceleration due to gravity = -9.8 m/s² (negative since it is directed downwards)and t = time it takes the stone to hit the water surface.
So, substituting the values of the variables into the equation, we have
y = ut - 1/2gt²
82.2 m = (0m/s)t - 1/2( -9.8 m/s²)t²
82.2 m = 0 + (4.9 m/s²)t²
82.2 m = (4.9 m/s²)t²
t² = 82.2 m/4.9 m/s²
t² = 16.78 s²
t = √16.78 s²
t = 4.1 s
This is also the time it takes the raft to move from 5.04 m before the bridge to 2.13 m before the bridge. So, the distance moved by the raft in time t = 4.1 s is 5.04 m - 2.13 m = 2.91 m.
Since speed = distance/time, the raft's speed v = 2.91 m/4.1 s = 0.71 m/s
A procedure is all the steps used to do an experiment in order.
<span>the experiment is when you test your hypothesis and is designed to answer your question. </span>
<span>the procedure is all the steps of the experiment.</span>
Hello!
Recall the period of an orbit is how long it takes the satellite to make a complete orbit around the earth. Essentially, this is the same as 'time' in the distance = speed * time equation. For an orbit, we can define these quantities:
← The circumference of the orbit
speed = orbital speed, we will solve for this later
time = period
Therefore:

Where 'r' is the orbital radius of the satellite.
First, let's solve for 'v' assuming a uniform orbit using the equation:

G = Gravitational Constant (6.67 × 10⁻¹¹ Nm²/kg²)
m = mass of the earth (5.98 × 10²⁴ kg)
r = radius of orbit (1.276 × 10⁷ m)
Plug in the givens:

Now, we can solve for the period:

Answer: a and d
Explanation: A.) the power lines themselves
B.) the wooden pole that supports the lines
C.) the rubber soles on the worker’s boots
D.) the metal tools the worker uses
E.) the wooden ladder leaning against the lines