Answer:
v = 0.059 m/s
Explanation:
To find the final speed of Olaf and the ball you use the conservation momentum law. The momentum of Olaf and the ball before catches the ball is the same of the momentum of Olaf and the ball after. Then, you have:
(1)
m: mass of the ball = 0.400kg
M: mass of Olaf = 75.0 kg
v1i: initial velocity of the ball = 11.3m/s
v2i: initial velocity of Olaf = 0m/s
v: final velocity of Olaf and the ball
You solve the equation (1) for v and replace the values of all variables:

Hence, after Olaf catches the ball, the velocity of Olaf and the ball is 0.059m/s
Answer: V=IR
Explanation: for a series circuit connected to a battery supply, the total emf across the circuit is given as
E = I(R + r) and by expanding, we have that E =IR + It
Where r is the internal resistance of the battery
I is the total current flowing in the circuit
R total load resistance in the circuit.
E is the total emf of the circuit.
The total emf is the sum of 2 separate voltages.
"IR" which is the terminal voltage and "Ir" which is the loss voltage.
The teenila voltage is the voltage flowing in the circuit based on the equivalent resistance of the circuit while the loss voltage is the wasted voltage based on the internal resistance of the battery source.
1 ft =12 in
4 in = 0.333 ft
volume = (п/4)*(0.333)² = 0.087 ft²
vol. flow = spead *volume
=3 ft/s * 0.087 ft²
vol flow = 0.261 ft³/s
Answer:
mgh₁ + ½mv₁² = mgh₂ + ½mv₂²
Explanation:
Initial total energy = final total energy
PE₁ + KE₁ = PE₂ + KE₂
mgh₁ + ½mv₁² = mgh₂ + ½mv₂²
Answer:
Y component = 32.37
Explanation:
Given:
Angle of projection of the rocket is, 
Initial velocity of the rocket is, 
A vector at an angle
with the horizontal can be resolved into mutually perpendicular components; one along the horizontal direction and the other along the vertical direction.
If a vector 'A' makes angle
with the horizontal, then the horizontal and vertical components are given as:

Here, as the velocity is a vector quantity and makes an angle of 33.6 with the horizontal, its Y component is given as:

Plug in the given values and solve for
. This gives,

Therefore, the Y component of initial velocity is 32.37.