Answer:
C = 0.0125 m/s⁴. The calculation procedure can be found in the attachment below. The concept of motion along a straight line with constant acceleration has been applied to solve the problem.
Explanation:
The sign convention chosen in this problem solution is upwards as positive and downwards negative. The equation of motion v = u + at has been used to calculate the constant C as only one unknown is contained in this equation. This is so because we have been given the initial velocity, the acceleration and the time taken. To solve future problems of this kind, first thing to check for is an equation of motion with the least number of unknown. This helps to reduce the complexity of the problem solution.
Answers:
a) 10 m
b) time=1.6 s, frquency=0.625 Hz
c) 6.25 m/s
Explanation:
a) If there is a crest at each dock and another three crests between the two docks, and the wavelength
is the distance between to crests; this means we have
in
:

Clearing
:


b) This part can be solved by a Rule of Three:
If 10 waves ---- 16 s
1 wave ----- 
Then:

This is the period of the wave
On the other hand, the frequency
of the wave has an inverse relation with its period
:


This is the frequency of the wave
c) The speed
of a wave is given by the following equation:


Finally:

Answer:
B. +5.75 m/s
Explanation:
When there are two bodies, a and b, whose velocities measured by a third observer (in this case, the ground) are
and
respectively, the relative velocity of B with respect to A is given by:

Thus, the velocity of the girl relative to the lawnmower is:

Answer:
Well, each ml of water requires one calorie to go up 1 degree Celsius, so this liter of water takes 1000 calories to go up 1 degree Celsius.
Explanation: