Answer:
The type of light and the material of lenz.
Explanation:
1) As the investigation is based on how the thickness of a lens effect the other variable. Thickness of the lenz is independent variable. So Lidia has to experiment with the different thicknesses in order to find the effect on dependent variable.
2) As the investigation is based to find the point where the beam of light is focused. It's a dependent variable and Lidia has no control over it. So the only thing she can do is to measure and observe how it respond to the changes in independent variable.
3) For conclusion, she has to make sure that the other variables are not effecting the output or results that is the beam point where the light is focused. So she must have to kept constant the type of light and material of lenz otherwise she won't be able to discriminate the effect of thickness of lenz from other causes.
Answer: short wavelength, high frequency
Explanation:
Gamma rays are highly energetic electromagnetic waves. High energy implies high frequency.
E = h ν
h is the Planck's constant, ν is the frequency.
For electromagnetic radiation, frequency is inversely proportional to wavelength. Thus, gamma rays have high frequency but short wavelength.
The frequency of gamma rays is greater than 10¹⁹ Hz and wavelength is less 10⁻¹² m.
Answer:
C. The facial feedback theory
Explanation:
The facial feedback theory as postulated by William James and connects back to the famous Charles Darwin talks about how facial expressions stimulate our emotional state of being. Based on this theory, the emotional experiences we have are determined by the looks on our faces.
According to the question, smiling at an event makes you enjoy it is an example of what the The facial feedback theory is explaining. Furthermore, smiling, which is a facial expression causes or stimulates an emotional state of enjoyment in that event.
Answer: Wavelength is the measure of the length of a complete wave cycle. The velocity of a wave is the distance traveled by a point on the wave. In general, for any wave the relation between Velocity and Wavelength is proportionate. It is expressed through the wave velocity formula.
Explanation: For any given wave, the product of wavelength and frequency gives the velocity. It is mathematically given by wave velocity formula written as-
V=f×λ
Where,
V is the velocity of the wave measure using m/s.
f is the frequency of the wave measured using Hz.
λ is the wavelength of the wave measured using m. Velocity and Wavelength Relation
Amplitude, Frequency, wavelength, and velocity are the characteristic of a wave. For a constant frequency, the wavelength is directly proportional to velocity.
Given by:
V∝λ
Example:
For a constant frequency, If the wavelength is doubled. The velocity of the wave will also double.
For a constant frequency, If the wavelength is made four times. The velocity of the wave will also be increased by four times.
Hope you understood the relation between wavelength and velocity of a wave. I truely hope this helps you out tho! Goodluck!