They are eaten by Tertiary consumers
<u>Answer:</u> The entropy change of the ethyl acetate is 133. J/K
<u>Explanation:</u>
To calculate the number of moles, we use the equation:

Given mass of ethyl acetate = 398 g
Molar mass of ethyl acetate = 88.11 g/mol
Putting values in above equation, we get:

To calculate the entropy change for different phase at same temperature, we use the equation:

where,
= Entropy change = ?
n = moles of ethyl acetate = 4.52 moles
= enthalpy of fusion = 10.5 kJ/mol = 10500 J/mol (Conversion factor: 1 kJ = 1000 J)
T = temperature of the system = ![84.0^oC=[84+273]K=357K](https://tex.z-dn.net/?f=84.0%5EoC%3D%5B84%2B273%5DK%3D357K)
Putting values in above equation, we get:

Hence, the entropy change of the ethyl acetate is 133. J/K
<h3><u>Answer;</u></h3>
When hydrogen is covalently bonded to an electronegative atom
<h3><u>Explanation;</u></h3>
- Hydrogen bonding is a special type of dipole-dipole attraction between molecules. It results from the attractive force between a hydrogen atom covalently bonded to a very electronegative atom such as a N, O, or F atom.
- Highly electronegative atoms attract shared electrons more strongly than hydrogen does, resulting in a slight positive charge on the hydrogen atom. The slightly positive hydrogen atom is then attracted to another electronegative atom, forming a hydrogen bond.
<span>The ionic charge of Calcium (Ca) in calcium carbonate (CaCO3) is 2+. CaCO3 has a neutral ionic charge sin CO3 has a 2- charge.</span>
<h2>
Answer:
atoms</h2>
Explanation:
The given formula of the compound is 
The formula says
Every mole of
contains
moles of atoms of hydrogen.
Given that number of moles of compound is 
So,the number of moles of hydrogen atoms present is 
Since each mole has
atoms,
moles has
atoms.